Алгебра 8 класс Макарычев8) Функция у = k/x и её график.Упражнения №№ 179 — 196:
Задание № 179. Функция задана формулой у = 8/x. Заполните таблицу.
x | –4 | –0,25 | 2 | 5 | 16 | ||
y | –4 | 0,4 |
Задание № 180. Обратная пропорциональность задана формулой у = 120/x. Заполните таблицу.
x | –1200 | –600 | 75 | 120 | 1000 | |||
y | –0,5 | –1 | 0,4 |
Задание № 181. Двигаясь со скоростью v км/ч, поезд проходит расстояние между городами А и В, равное 600 км, за t ч. Запишите формулу, выражающую зависимость: a) v от t; б) t от v.
Задание № 182. Обратная пропорциональность задана формулой у = 10/x. Найдите значение функции, соответствующее значению аргумента, равному 100; 1000; 0,1; 0,02. Определите, принадлежит ли графику этой функции точка А (–0,05;–200), В (–0,1; 100), С (400; 0,025), D (500; –0,02).
Задание № 183. Известно, что некоторая функция – обратная пропорциональность. Задайте её формулой, зная, что значению аргумента, равному 2, соответствует значение функции, равное 12.
Задание № 184. На рисунке 6 построен график функции, заданной формулой у = 8/x. Найдите по графику:
а) значение у, соответствующее значению х, равному 2; 4; –1; –4; –5;
б) значение х, которому соответствует значение у, равное –4; –2; 8.
Задание № 185. Постройте график функции, заданной формулой у = –8/x. Найдите по графику:
а) значение у, соответствующее значению х, равному 4; 2,5; 1,5; –1; –2,5;
б) значение х, которому соответствует значение у, равное 8; –2.
Задание № 186. Постройте график функции у = 6/x и, используя его, решите уравнение: а) 6/x = х; б) 6/x = –х + 6.
Задание № 187. Решите графически уравнение: а) 8/x = х2; б) 8/x = x3.
Задание № 188. (Для работы в парах.) Используя графические представления, выясните, сколько решений имеет уравнение:
а) k/x = х2, где k > 0; в) k/x = x3, где k > 0;
б) k/x = х2, где k < 0; г) k/x = x3, где k < 0.
1) Распределите, кто выполняет задания а) и г), а кто – задания б) и в), и выполните их.
2) Проверьте друг у друга, верно ли построены графики функции у = k/x.
3) Обсудите правильность сделанных выводов о числе решений уравнения.
Задание № 189. Прямоугольный параллелепипед со сторонами основания а см и b см и высотой 20 см имеет объём, равный 120 см3. Выразите формулой зависимость b от а. Является ли эта зависимость обратной пропорциональностью? Какова область определения этой функции? Постройте график.
Задание № 190. Задайте формулой обратную пропорциональность, зная, что её график проходит через точку:
а) А (8; 0,125); б) В(2/3; 1 4/5); в) С(–25; –0,2).
Задание № 191. На рисунке 7 построен график зависимости времени, затрачиваемого на путь из пункта А в пункт В, от скорости движения. С помощью графика ответьте на вопросы:
а) Сколько времени потребуется на путь из А в В при скорости движения 80 км/ч? 25 км/ч? 40 км/ч?
б) С какой скоростью надо двигаться, чтобы добраться из пункта А в пункт В за 1 ч? за 4 ч? за 8 ч? за 16 ч?
в) Каково расстояние между пунктами А и В?
Задание № 192. Определите знак числа k, зная, что график функции у = k/x расположен:
а) в первой и третьей координатных четвертях;
б) во второй и четвёртой координатных четвертях.
Задание № 193. На рисунке 8 построен график одной из следующих функций:
1) у = –5/x; 2) у = –3/x; 3) у = 3/x; 4) у = 5/x.
Укажите эту функцию.
Задание № 194. .
Задание № 195. (Задача–исследование.) При каких значениях а и b является тождеством равенство (5x + 31)/((x – 5)(x + 2)) = a/(x – 5) + b/(x + 2) ?
а) Обсудите, какие преобразования надо выполнить и каким условием воспользоваться, чтобы ответить на вопрос задачи.
б) Выполните необходимые преобразования, составьте систему уравнений и решите её.
в) Ответьте на вопрос задачи и проверьте полученный ответ.
Задание № 196. .
Вы смотрели: Алгебра 8 класс УМК Макарычев. Упражнения из учебника с ответами и решениями. Глава 1. Рациональные дроби. п.8) Функция у = k/x и её график. Алгебра 8 Макарычев Упражнения 179-196 + ОТВЕТЫ.
Просмотров: 3 157
Раздел 2. Квадратные уравнения
2.1 Квадратное уравнение и его корни
2.12.22.32.42.52.62.72.82.9
2.102.112.122.132.142.152.162.182.192.202.212.222.232.242.252.262.272.28
2.2 Формулы корней квадратного уравнения
2.292.302.312.322.332.342.352.362.372.382.392.402.412.422.432.442.452.462.472.482.492.502.512.522.532.542.552.562.572.582.592.602.61
2.3 Теорема Виета
2.622.632.642.652.662.672.682.692.70
2.712.722.732.742.752.762.772.782.792.802.812.822.832.842.852.862.872.882.892.902.91
2.4 Свойства корней квадратного уравнения
2.922.932.942.952.962.972.982.992.1002.1012.1022.1032.1042.1052.1062.1072.1082.1092.1102.112
2.5 Решение уравнений
2.1132.1142.1152.1162.1172.1182.1192.1202.1212.1222.1232.1242.1252.1262.1272.1282.1292.130
2.6 Рациональные уравнения. Текстовые задачи, приводимые к квадратным уравнениям
2.131
2.1322.1332.1342.1352.1362.1372.1382.1392.1402.1412.1422.1432.1442.1452.1462.1472.1482.1492.1502.1512.1522.1532.1542.1552.1562.1572.1582.1592.160
2.1612.1622.1632.1642.1652.1662.1672.1682.1692.1702.1712.1722.1732.174
Раздел 1. Квадратный корень и иррациональные выражения
1.1. Определение квадратного корня
Упражнение
1.11.21.31.4
1.51.61.71.81.91.101.111.121.131.141.151.161.171.181.191.201.211.221.231.241.251.261.271.281.29
1.2 Понятие иррационального числа
Упражнение
1.301.311.321.331.341.351.361.371.381.391.401.411.421.431.441.451.461.471.481.491.501.511.521.531.541.551.561.571.581.59
1.3 Соответствеи между действительными числами и точками прямой
Упражнение
1.601.611.621.631.64
1.651.661.671.681.691.701.711.721.731.741.751.761.771.781.791.801.811.821.831.841.851.861.871.881.891.90
1.4 Свойства квадратного корня
Упражнение
1.911.921.931.941.951.961.971.991.1001.1011.1021.1031.1041.1051.1061.1071.1081.1091.1101.1111.1121.1131.1141.1151.1161.1171.1181.1191.1201.1211.1221.1231.1241.125
1.1261.1271.1281.1291.130
Упражнение
1.1311.1321.1331.1341.1351.1361.1371.1381.1391.1401.1411.1421.1431.1441.1451.1461.1471.1481.1491.1501.1511.1521.1531.1541.1551.1561.1571.1581.1591.1601.1611.1621.1631.1641.1651.1661.1671.1681.1691.1701.1711.1721.1731.1741.1751.176