Теорема виета

Квадратные уравнения

История происхождения

Теорема Виета — это понятие знакомо практически каждому со школьных времен. Но действительно ли это «знакомо»? Мало кто сталкивается с ним в повседневной жизни, но не все, кто занимается математикой, иногда до конца понимают глубокий смысл и огромное значение этой теоремы

Поняв важность такого простого и эффективного математического инструмента, невольно думаешь о человеке, который его первым открыл

Известный французский ученый, начал свою карьеру юристом, но, очевидно, его призванием была математика. Находясь на королевской службе в качестве советника, он прославился тем, что смог прочитать перехваченное зашифрованное сообщение короля Испании в Нидерланды. Это дало возможность французскому королю Генриху III узнать обо всех намерениях его противников. Постепенно присоединяясь к математическим знаниям, Франсуа Виет пришел к выводу, что должна быть тесная связь между новейшими исследованиями «алгебраистов» и глубоким геометрическим наследием древних. В ходе научных исследований он разработал и сформулировал почти всю элементарную алгебру. Он был первым, кто ввел использование буквенных величин в математическом аппарате, четко обозначив понятия: число, значение и их взаимосвязь. Виет доказал, что, выполняя операции в символической форме, можно решить задачу для общего случая, практически для любых значений данных величин.

Его исследования по решению уравнений более высоких степеней, чем вторая, привели к теореме, которая теперь известна как обобщенная теорема Виета. Это имеет большое практическое значение, а его применение позволяет быстро решать уравнения более высокого порядка.

Одно из свойств этой теоремы следующее: произведение всех n-й степени равно ее свободному члену. Это свойство часто используется при решении уравнений третьей или четвертой степени, чтобы понизить порядок полинома. Если полином степени n имеет целые корни, то их легко определить простым методом выбора. И тогда, поделив многочлен на выражение (x-x1), мы получим многочлен (n-1) -й степени.

В технических науках существует огромное количество способов решения квадратных уравнений.  Со временем, многие решают уравнения, даже, устно без применения письменных принадлежностей.

Теорема Виета, является одним из таких методов решения. Она довольно проста в использовании и понятна даже на начальном уровне изучения в школах. В данном материале подробно разберем теорему Виета. Выведем формулы для ее доказательства.

При решении квадратных уравнений можно наблюдать целый ряд взаимодействий. Наиболее явным считается, взаимосвязь между корнем значения и примененным коэффициентом.

Сумма значений корня равняется x^2 + bx + c = 0 будет равна коэффициенту второй с обратным знаком.

Произведение корней равняется простому числу.

При заданном уравнении x^2 + bx + c = 0, будут справедливы два основных равенства.

x_1+x_2=-b;

x_1⋅x_2=c.

Проведя анализ обоих уравнений, приходим к выводу, что оба выражения являются правдивыми.

Рассмотрим пример решения задачи, с использованием теоремы Виета:

Запишем следующее уравнение: x^2+4x+3=0.

Используя теорему, можно записать, что сумма корней равна второму значению коэффициента, у которого противоположный знак.

Применяемый коэффициент равен четырем, следовательно, преобразуем уравнение и получим значение минус четыре.

x_1+x_2=-4;

Значение произведения корней равно простому числу. В уравнение это будет число три.  Следовательно:

x_1+x_2=-4;

x_1⋅x_2=3.

Далее проверим правдивость составленных уравнений, а именно равенство произведения 3 и суммы -4.  Для этого необходимо вычислить квадратные корни заданного уравнения.

x^2+4x+3=0

Применим для этого формулы второго четного значения коэффициента.

α=1,k=2,c=3;

D_1=-〖-k〗^2-ac=2^2-1⋅3=4-3=1;

x_1=(-k+√(D_1 ))/α=(-2+√1)/1=(-2+1)/1=(-1)/1=-1;

x_1=(-k-√(D_1 ))/α=(-2-√1)/1=(-2-1)/1=(-3)/1=-3.

По итогам проведенных вычислений мы видим, что корни уравнения равны -1 и -3. Следовательно их сумма равняется заданному коэффициенту. Отсюда следует, что уравнение решено правильно.

x_1+x_2=-4.

-1+(-3)=-4.

Выполняется условие, на основание которого произведение данных корней равняется свободному числу.

x_1⋅x_2=3.

-1⋅(-3)=3.

Результат правильного вычисления:

x_1+x_2=-4.

x_1⋅x_2=3.

Теорема Виета для решения квадратных уравнений

Теорема Виета — это еще один способ упростить решение полных квадратных уравнений. Ее очень часто используют для решения несложных квадратных уравнений в уме и для анализа квадратного многочлена, особенно это актуально в сложных заданиях с параметром в ЕГЭ.

Прежде чем сформулировать теорему Виета, познакомимся с приведенными квадратными уравнениями.

Приведенное квадратное уравнение

Квадратные уравнения \(ax^2+bx+c=0\), у которых коэффициент \(a\) при \(x^2\) равен \(1\), называют приведенными.

Например:
$$x^2+4x-3=0;$$
$$x^2-140x-65=0;$$
Любое полное квадратное уравнение всегда можно свести к приведенному. Для этого надо поделить все уравнение на коэффициент \(a\):

Пример 17
Привести квадратное уравнение к приведенному.
$$3x^2-15x+9=0;$$
Разделим уравнение на \(a=3\). (Так можно делать: если левую и правую части уравнения поделить на одно и то же число, то корни уравнения от этого не изменятся.)
$$\frac{3x^2-15x+9}{3}=\frac{0}{3};$$
В результате каждое слагаемое поделится на \(3\):
$$\frac{3x^2}{3}-\frac{15x}{3}+\frac{9}{3}=0;$$
$$x^2-5x+3=0;$$

Формулы Виета

Сумма корней приведенного квадратного уравнения \(x^2+bx+c=0\) равна второму коэффициенту \(b\) со знаком минус, а произведение корней равно свободному члену \(c\).

Пусть \(x_1\), и \(x_2\) — корни квадратного уравнения \(x^2+bx+c=0\), тогда справедливы формулы:
$$ \begin{cases}
x_1+x_2=-b; \\
x_1*x_2=c. \\
\end{cases}$$
На первый взгляд может показаться, что это очень запутанно, но на самом деле, теорема Виета часто помогает решить уравнение в уме. Попробуем на практике:

Пример 18
$$x^2+4x+3=0;$$
$$a=1 \quad b=4 \quad c=3.$$
Воспользуемся теоремой Виета и выпишем формулы:
$$ \begin{cases}
x_1+x_2=-b; \\
x_1*x_2=c. \\
\end{cases}$$
Подставим коэффициенты:
$$ \begin{cases}
x_1+x_2=-4; \\
x_1*x_2=3. \\
\end{cases}$$

Нужно найти такие \(x_1\) и \(x_2\), которые удовлетворяют и первому, и второму уравнениям в системе. Подобрать корни достаточно просто: рассмотрим второе уравнение, какие два числа дают при умножении \(3ку\)?

Либо: \(3=1*3\);
Либо: \(3=(-1)*(-3)\).

Осталось проверить, будут ли найденные множители удовлетворять первому уравнению в системе, просто подставим их:
$$1+3 \neq -4;$$
$$-1+(-3) = -4;$$
Вот мы и нашли корни системы уравнений: \(x_1=-1\) и \(x_2=-3\). А самое главное, мы нашли корни исходного квадратного уравнения. Ответ: \(x_1=-1 \quad и \quad x_2=-3.\)

Если потренироваться, то все эти вычисления можно легко проводить в уме, если коэффициенты небольшие. Главное запомнить, что произведение корней должно быть равно свободному члену \(c\), а сумма корней равна \((-b)\).

Теорема Виета, если \(a\neq1\)

По теореме Виета можно решать не только приведенные квадратные уравнения (у которых \(a=1\)). Но перед тем, как применять формулы Виета, надо привести уравнение к приведенному, поделив на первый коэффициент \(a\):
$$ax^2+bx+c=0; \quad \mid :a$$
$$\frac{ax^2}{a}+\frac{bx}{a}+\frac{c}{a};$$
$$x^2+\frac{b}{a}*x+\frac{c}{a};$$
Получили приведенное квадратное уравнение, для которого можно записать формулы Виета, где вторым коэффициентом будет \(\frac{b}{a}\), а свободным членом \(\frac{c}{a}\):
$$ \begin{cases}
x_1+x_2=-\frac{b}{a}; \\
x_1*x_2=\frac{c}{a}. \\
\end{cases}$$

Пример 19
$$12x^2+x-1=0;$$
$$a=12 \quad b=1 \quad c=-1.$$
Коэффициент \(a=12 \neq 1\), поэтому разделим все уравнение на \(a=12\):
$$12x^2+x-1=0; \quad \mid :12$$
$$x^2+\frac{1}{12}x-\frac{1}{12}=0;$$
$$a=1 \quad b=\frac{1}{12} \quad c=-\frac{1}{12}.$$

Теорема Виета:
$$ \begin{cases}
x_1+x_2=-\frac{1}{12}; \\
x_1*x_2=-\frac{1}{12}. \\
\end{cases}$$

Подбираем корни:
$$x_1=-\frac{1}{3};$$
$$x_2=\frac{1}{4};$$

Ответ: \(x_1=-\frac{1}{3} \quad и \quad x_2=\frac{1}{4}.\)

Что такое квадратные уравнения?

А теперь подробно с примерами обсудим квадратные уравнения.

Любые уравнения, сводящиеся к виду \(ax^2+bx+c=0\), называются квадратными. Где буквы \( b,\; с\) — любые числа, \(a\neq0\). Почему \(a\neq0\) мы обсудим ниже.

Обратите внимание на порядок слагаемых в квадратном уравнении: \(a\) — всегда стоит первая и обязательно умножается на \(x^2\), она называется старшим коэффициентом (или первым); \(b\) — принадлежит второму слагаемому и всегда умножается просто на переменную \(x\), это у нас второй коэффициент; \(c\) — называют свободным членом, она не умножается ни на какую переменную. В дальнейшем старайтесь приводить квадратное уравнение к виду \(ax^2+bx+c=0\), чтобы слагаемые стояли именно в таком порядке

Это очень важно при решении уравнений, и поможет избежать множества ошибок

В дальнейшем старайтесь приводить квадратное уравнение к виду \(ax^2+bx+c=0\), чтобы слагаемые стояли именно в таком порядке

Это очень важно при решении уравнений, и поможет избежать множества ошибок

Потренируемся определять значения коэффициентов \( a, \; b,\; с\), чтобы запомнить порядок:

Пример 1
$$2x^2+3x+4=0;$$
$$a=2 \quad b=3 \quad c=4.$$

Пример 2
$$5x^2-3x-0,7=0;$$
$$a=5 \quad b=-3 \quad c=-0,7.$$

Пример 3
$$-x^2+2x+10=0;$$
Минус перед \(x^2\) можно представить в виде \(-x^2=-1*x^2\). Единицу обычно не пишут, поэтому минус перед первым слагаемым означает, что \(a=-1\):
$$a=-1 \quad b=2 \quad c=10.$$

Пример 4
$$3+x^2-5x=0;$$
Слагаемые стоят в неправильном порядке. Так коэффициенты находить неудобно, поэтому переставим все слагаемые в нужном порядке. От перемены мест слагаемых сумма не меняется:
$$x^2-5x+3=0;$$
$$a=1 \quad b=-5 \quad c=3.$$

Пример 5
$$2x^2-3x=0;$$
В уравнении нет свободного члена \(c\), поэтому он будет равен \(0\):
$$a=2 \quad b=-3 \quad c=0.$$

Пример 6
$$-4x^2+1=0;$$
А здесь уже нет второго коэффициента \(b\):
$$a=-4 \quad b=0 \quad c=1.$$

Уравнения, приведенные в примерах №5 и 6, называются неполными квадратными уравнениями, так как в них коэффициенты \(b\) или \(c\) равны нулю.

А вот если в уравнении коэффициенты \( a, \; b,\; с\) не равны 0, то такое уравнение называется полным.

Основные формулы теоремы Виета

В этом пункте мы расширяем знания до класса задач, которые вращаются вокруг формул Виета, которые на самом деле не являются формулами в определенном смысле, а скорее очень полезными инструментами для извлечения информации о корнях многочлена, фактически не зная числового значения самих корней.

Для решения задач и уравнений как квадратных, так и кубических, применяются соответствующие формулы. в математике они получили название теоремы Виета.

Разберем подробно каждое уравнение:

Формула

Алгебраическая сумма числовых значений:

где: n- действительные значения корней;

Рассмотрим еще несколько формул:

x_1+x_2+x_3+x_4+………+x_n=-a_1/a_0;

x_1⋅x_2+x_3⋅x_4+………+x_(n-1)⋅x_n=a_2/a_0;

x_1⋅x_2⋅x_3+x_1⋅x_2⋅x_4+………+x_(n-2)⋅x_(n-1)=-a_3/a_0;

x_1⋅x_2⋅x_3……..x_n=(-1_ )〖^n〗⋅a_n/a_0.

Для определения основных формул теоремы Виета мы используем следующие компоненты:

  • алгебраическая теорема разложения значений многочлена простые линейные множители значений;
  • вычисление равных между собой многочленов, при помощи равенства их коэффициентов.

Формула

Формула для кубического уравнения:

С левой части уравнения данные будут именоваться, как симметрические многочлены.

Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м2. При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Обозначим ширину комнаты через x. А длину комнаты через 2x, потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

2x × x

По условию задачи площадь должна быть 8 м2. Значит выражение 2x × x следует приравнять к 8

2x × x = 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

2×2 = 8

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Теперь воспользуемся квадратным корнем. Если x2 = 4, то . Отсюда x = 2 и x = −2.

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2. Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x. Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

2x = 2 × 2 = 4

Значит длина равна 4 м, а ширина 2 м. Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м2

4 × 2 = 8 м2

Ответ: длина комнаты составляет 4 м, а ширина 2 м.

Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (x + 10) метров. Площадь участка составляет 1200 м2. Умножим длину участка на его ширину и приравняем к 1200, получим уравнение:

x(x + 10) = 1200

Решим данное уравнение. Для начала раскроем скобки в левой части:

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется

Решим получившееся уравнение с помощью формул:

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30. Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение x + 10. Подставим в него найденное значение x и вычислим длину:

x + 10 = 30 + 10 = 40 м

Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30) получится 1200 м2

40 × 30 = 1200 м2

Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно участка.

Периметр прямоугольника это сумма всех его сторон. Тогда:

P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

Ответ: длина изгороди огородного участка составляет 140 м.

Примеры

Пример 1

20x² – 15x – 10 = 0

Лучше сразу выписать так: a = 20, b = – 15, c = – 10.

1. Ищем дискриминант: формула D = b² – 4ac <=> D = (– 15)² – 4 × 20 × (– 10) = 225 + 800 = 1025; D > 0 <=> значит есть два корня.

2. Ищем эти корни: формула корней

2.1. Разбиваем формулу на две части, первый корень:

Уравнение 20x² – 15x – 10 = 0, где a = 20, b = – 15, c = – 10; D =1025.

x1 = ((–(–15)) + √ 1025)/(2×20) = (15 + 32,0156) / 40 ≈ 1,17539

2.2. Второй корень:

Уравнение 20x² – 15x – 10 = 0, где a = 20, b = – 15, c = – 10; D =1025.

x2 = ((–(–15)) – √ 1025)/(2×20) ≈ (15 – 32,0156) / 40 ≈ -0,42539

Пример 2

–x² +6x + 18 = 0

a = –1, b = 6, c = 18

Дискриминант D = b² – 4ac

D = 6² – 4×(–1)×(18) = 36 + 72 = 108, D > 0 <=> есть два корня

Ищем корни:

a = –1, b = 6, c = 18, D = 108

X1,2 = ((–6) ±√108)/(2×(–1)) =>

x1 = ((–6) +√108)/(–2) = ((–6) + 10,3923)/(–2) = – 2,19615

x2 = ((–6) –√108)/(–2) = ((–6) – 10,3923)/(–2) = 8,19615

Как разложить квадратный трёхчлен на множители?

Продолжим с примером уравнения 20x² – 15x – 10 = 0

Мы уже нашли корни

x1 ≈ 1,17539, x2 ≈ -0,42539

Выносим коэффициент x² за скобки, и оба корня ставятся с противоположными знаками таким образом:

20x² – 15x – 10 = 20 (x – 1,17539) (x+0,42539)

Хотите проверить? Открываем скобки и проверяем

20 (x – 1,17539) (x+0,42539) = 20 (x²–1,17539x + 0,42539x–0,42539×1,17539) = 20 (x²–0,75x – 0,4999991521) =

20 x²–15x–9,999983042

Погрешность в 0,000016958 должна быть из-за округления в предыдущих расчётах.

Расписание квадратного уравнения на множители

Пусть поставлена задача: разложить квадратное уравнение на множители. Для его выполнения сначала решаем уравнение (находим корни). Далее, найденные корни подставляем в формулу разложения квадратного уравненияНа этом задача будет разрешен.

Задачи на квадратное уравнение

Задача 1. Найти корни квадратного уравнения

x^2-26x+120=0.

Решение: Запишем коэффициенты и подставим в формулу дискриминанта Корень из данного значения равен 14, его легко найти с калькулятором, или запомнить при частом использовании, однако для удобства, в конце статьи я Вам дам список квадратов чисел, которые часто могут встречаться при подобных задачах. Найденное значение подставляем в формулу корней и получаем

Задача 2. Решить уравнение

2×2+x-3=0.

Решение: Имеем полное квадратное уравнение, выписываем коэффициенты и находим дискриминант По известным формулам находим корни квадратного уравнения

Задача 3. Решить уравнение

9×2-12x+4=0.

Решение: Имеем полное квадратное уравнение. Определяем дискриминант Получили случай когда корни совпадают. Находим значения корней по формуле

Задача 4. Решить уравнение

x^2+x-6=0.

Решение: В случаях когда есть малые коэффициенты при х целесообразно применять теорему Виета. По ее условию получаем два уравнения С второго условия получаем, что произведение должно быть равно -6. Это означает, что один из корней отрицателен. Имеем следующую возможную пару решений{-3;2}, {3;-2}. С учетом первого условия вторую пару решений отвергаем. Корни уравнения равны

Задача 5. Найти длины сторон прямоугольника, если его периметр 18 см, а площадь 77 см2.

Решение: Половина периметра прямоугольника равна сумме соседних сторон. Обозначим х – большую сторону, тогда 18-x меньшая его сторона. Площадь прямоугольника равна произведению этих длин:х(18-х)=77; илих2-18х+77=0. Найдем дискриминант уравнения Вычисляем корни уравнения Если х=11, то 18-х=7, наоборот тоже справедливо (если х=7 , то 21-х=9).

Задача 6. Разложить квадратное 10×2-11x+3=0 уравнения на множители.

Решение: Вычислим корни уравнения, для этого находим дискриминант Подставляем найденное значение в формулу корней и вычисляем Применяем формулу разложения квадратного уравнения по корнями Раскрыв скобки получим тождество.

Квадратное уравнение с параметром

Пример 1. При каких значениях параметра а, уравнение (а-3)х2+(3-а)х-1/4=0 имеет один корень?

Решение: Прямой подстановкой значения а=3 видим, что оно не имеет решения. Далее воспользуемся тем, что при нулевом дискриминанте уравнение имеет один корень кратности 2. Выпишем дискриминант упростим его и приравняем к нулю Получили квадратное уравнение относительно параметра а, решение которого легко получить по теореме Виета. Сумма корней равна 7, а их произведение 12. Простым перебором устанавливаем, что числа 3,4 будут корнями уравнения. Поскольку решение а=3 мы уже отвергли в начале вычислений, то единственным правильным будет — а=4. Таким образом, при а=4 уравнение имеет один корень.

Пример 2. При каких значениях параметра а, уравнение а(а+3)х^2+(2а+6)х-3а-9=0 имеет более одного корня?

Решение:Рассмотрим сначала особые точки, ими будут значения а=0 и а=-3. При а=0 уравнение упростится до вида 6х-9=0; х=3/2 и будет один корень. При а= -3 получим тождество 0=0. Вычислим дискриминант и найдем значения а при котором оно положительно С первого условия получим а>3. Для второго находим дискриминант и корни уравнения Определим промежутки где функция принимает положительные значения. Подстановкой точки а=0 получим 3>0. Итак, за пределами промежутка (-3;1/3) функция отрицательная. Не стоит забывать о точке а=0, которую следует исключить, поскольку в ней исходное уравнение имеет один корень. В результате получим два интервала, которые удовлетворяют условию задачи Подобных задач на практике будет много, постарайтесь разобраться с заданиями самостоятельно и не забывайте учитывать условия, которые взаимоисключают друг друга. Хорошо изучите формулы для решения квадратных уравнений, они довольна часто нужны при вычислениях в разных задачах и науках.

Вторая способ нахождения корней — это Теорема Виета.

Формулируется теорема не только для квадратных уравнений, но и для многочленов. Это Вы можете почитать в Википедии или других электронных ресурсах. Однако для упрощения рассмотрим ту ее часть, которая касается приведенных квадратных уравнений, то есть уравнений вида (a=1) Суть формул Виета заключается в том, что сумма корней уравнения равна коэффициенту при переменной, взятому с противоположным знаком. Произведение корней уравнения равно свободном члену. Формулами теорема Виета имеет запись.Вывод формулы Виета достаточно прост. Распишем квадратное уравнение через простые множителиКак видите все гениальное одновременно является простым. Эффективно использовать формулу Виета когда разница корней по модулю или разница модулей корней равна 1, 2. Например, следующие уравнения по теореме Виета имеют корни До 4 уравнения анализ должен выглядеть следующим образом. Произведение корней уравнения равно 6, следовательно корнями могут быть значения (1, 6) и (2, 3) или пары с противоположным знаком. Сумма корней равна 7 (коэффициент при переменной с противоположным знаком). Отсюда делаем вывод что решения квадратного уравнения равны x=2; x=3. Проще подбирать корни уравнения среди делителей свободного члена, корректируя их знак с целью выполнения формул Виета. В начале это кажется трудно сделать, но с практикой на ряде квадратных уравнений такая методика окажется эффективнее вычисления дискриминанта и нахождения корней квадратного уравнения классическим способом.Как видите школьная теория изучения дискриминанта и способов нахождения решений уравнения лишена практического смысла — «Зачем школьникам квадратное уравнение?», «Какой физический смысл дискриминанта?».

Алгебра 8 Мордкович (упр. 28.1 — 28.48)

§ 28. Формулы корней квадратных уравнений

Найдите дискриминант квадратного уравнения:

Задание № 28.1. а) х2 + 5х – 6 = 0;   б) х2 – 1,3х + 2 = 0;   в) х2 – 7х – 4 = 0;   г) х2 – 2,4х +1 = 0.

Задание № 28.2. а) 3х2 + 2х – 1 = 0;   б) –х2 + 4х + 3 = 0;   в) 4х2 – 5х – 4 = 0;   г) –2х2 + 5х + 3 = 0.

Определите число корней квадратного уравнения:
Задание № 28.3.
а) х2 – 8х – 84 = 0;   б) 36х2 – 12х + 1 = 0;   в) х2 – 22х – 23 = 0;   г) 16х2 – 8х + 1 = 0.

Задание № 28.4. а) х2 + 3х + 24 = 0;   б) х2 – 16х + 64 = 0;   в) х2 – 2х + 5 = 0;   г) х2 + 6х + 9 = 0.

Задание № 28.5. а) х2 – 5х + 6 = 0;   б) х2 – 2х – 15 = 0;   в) х2 + 6x + 8 = 0;   г) x2 – 3x – 18 = 0.

Задание № 28.6. а) х2 + 42х + 441 = 0;   б) х2 + 8х + 7 = 0;   в) х2 – 34х + 289 = 0;   г) х2 + 4х – 5 = 0.

Задание № 28.7. а) 2х2 + 3х + 1 = 0;   б) 3х2 – 3х + 4 = 0;   в) 5х2 – 8х + 3 = 0;   г) 14х2 + 5х – 1 = 0.

Задание № 28.8. а) 4х2 + 10х – 6 = 0;   б) 25х2 + 10х + 1 = 0;   в) 3х2 – 8х + 5 = 0;   г) 4х2 + х + 67 = 0.

Задание № 28.9.

Задание № 28.10.

Задание № 28.11.

Задание № 28.12.

Задание № 28.13.

Задание № 28.14.

Задание № 28.15.

Задание № 28.16.

Задание № 28.17.

Задание № 28.18.

Задание № 28.19.

Задание № 28.20.

Задание № 28.21. Докажите, что при любом значении параметра р уравнение 3х2 – рх – 2 = 0 имеет два корня.

Задание № 28.22. Найдите натуральное число, квадрат которого на 56 больше самого числа.

Задание № 28.23. Одна сторона прямоугольника на 5 см больше другой, а его площадь равна 84 см2. Найдите стороны прямоугольника.

Задание № 28.24. Представьте число 120 в виде произведения двух чисел, одно из которых на 2 меньше другого.

Задание № 28.25. Площадь прямоугольного треугольника равна 180 м2. Найдите катеты этого треугольника, если один больше другого на 31 м.

Задание № 28.26. От квадратного листа картона отрезали полоску шириной 3 см. Площадь оставшейся части равна 70 см2. Найдите первоначальные размеры листа картона.

Задание № 28.27. Произведение двух последовательных натуральных чисел на 271 больше их суммы. Найдите эти числа.

Задание № 28.28. Сумма квадратов двух последовательных натуральных чисел равна 1201. Чему равна разность квадратов этих чисел?

Задание № 28.29. Найдите три последовательных натуральных числа, сумма квадратов которых равна 1589.

Задание № 28.30. Гипотенуза прямоугольного треугольника больше одного из катетов на 32 см и больше другого на 9 см. Найдите стороны треугольника.

Задание № 28.31. В прямоугольном треугольнике один катет меньше гипотенузы на 8 см, а другой – на 4 см. Найдите гипотенузу.

Задание № 28.32. Сумма квадратов двух последовательных натуральных чисел больше их произведения на 307. Найдите эти числа.

Задание № 28.33. Квадрат суммы двух последовательных натуральных чисел больше суммы их квадратов на 840. Найдите эти числа.

Задание № 28.34. Вкладчик положил в банк 10 000 р. под некоторый процент годовых. В конце первого года банк увеличил процент годовых на 5%. Под какой процент были положены деньги, если после двух лет хранения денег в банке вкладчик получил 11 550 рублей?

Задание № 28.36.

Задание № 28.37.

Задание № 28.38.

Задание № 28.39.

Задание № 28.40.

Задание № 28.41.

Задание № 28.42.

Задание № 28.43.

Задание № 28.44.

Задание № 28.45.

Задание № 28.46.

Задание № 28.47.

Задание № 28.48.

Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2020). ГЛАВА 4. КВАДРАТНЫЕ УРАВНЕНИЯ. § 28. Формулы корней квадратных уравнений. ОТВЕТЫ на упражнения 28.1 — 28.48. Вернуться в ОГЛАВЛЕНИЕ.

Просмотров: 95 131

Обратная теорема Виета и ее особенности при решении задач

Значениями m и n обозначим квадратные корни уравнения. Сумма принятых значений равняется коэффициенту с противоположным знаком и произведение равняется свободному числу. x^2+4x+3=0

Запишем следующее равенство значений:

m+n=-b;

m⋅b=c.

Чтобы доказать, что принятые значения являются корнями уравнения, их необходимо подставить вместо значений x и вычислить.  Если после вычисления левая часть уравнения равна нулю, значит значения m и n являются корнями уравнения x^2+4x+3=0.

Выразим значение b из уравнения m+n=-b.

Для этого перемножим обе части уравнения на отрицательное значение -1.

m+n=-b⋅(-1);

-m-n=b;

b =-m-n.

Подставим значение m в уравнение, а выражение   -m-n, заменим вместо значения b.

x^2+bx+c=0;

m^2+(-m-n)m+mn=0;

m^2+(-m^2-mn)+mn=0;

m^2-m^2-mn+mn=0;

0=0.

Равенство получается верным. Следовательно, значение m является корнем уравнения. Аналогичные действия проводим и с числом n.

x^2+bx+c=0;

n^2+(-m-n)n+mn=0;

n^2-mn-n^2+mn=0;

0=0.

При x = n получается верное равенство. Следовательно, число n является искомым корнем. Проведя вычисления, мы доказали правдивость заданных значений корней. Выполним пример решения по данной теореме, для закрепления материала.

Задано уравнение: x^2-6x+8=0

Сумма произведения корневых значений равна 6.

Произведение корней равно 8.

x_1+x_2=6;

x_1⋅x_2=8.

Подберем значения корней, чтобы они удовлетворяли неравенству уравнений. Подбирать корни проще всего через их перемножение.

Замечание восемь получаем, когда перемножим четыре на два. Можно также записать как 8х1.

Значения〖 x〗_1 и x_2 надо подбирать так, чтобы они соответствовали и второму равенству тоже.

Поэтому значения 1 и 8 не подходят, потому что они не соответствуют нужным значениям уравнения. А вот числовые значения 4 и 2 являются правдивыми для данного уравнения.

x_1+x_2=6      4+2=6      

x_1⋅x_2=8      4⋅2=8

Следовательно значения 6 и 8 соответствуют нужным значениям и являются корнями уравнения: x^2-6x+8=0.

x_1=4; 〖x_2=2.〗^

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Нужна помощь

Примеры решения квадратных уравнений

Пример 1. Решить уравнение x2 = 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

Ответ: 9, −9.

Пример 2. Решить уравнение x2 − 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Ответ: 3, −3.

Пример 3. Решить уравнение x2 − 9x = 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение x − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Ответ: 0, 9.

Пример 4. Решить уравнение x2 + 4x − 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b2 − 4ac = 42 − 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Ответ: 1, −5.

Пример 5. Решить уравнение

Умнóжим обе части на чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Приведём подобные члены:

Решим получившееся уравнение с помощью формул:

Ответ: 5, .

Пример 6. Решить уравнение x2 = 6

В данном примере как и нужно воспользоваться квадратным корнем:

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Но чаще всего корень оставляют в виде радикала:

Ответ:

Пример 7. Решить уравнение (2x + 3)2 + (x − 2)2 = 13

Раскроем скобки в левой части уравнения:

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Получили неполное квадратное уравнение. Решим его:

Ответ: , −1,6.

Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

Раскроем скобки:

Приведём подобные члены:

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Второй способ. Найти значения x, при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: