Номер 282

Гдз по алгебре 8 класс: макарычев ю.н.

Квадрат суммы

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: \((a+b)^2\). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, \((a+b)^2=(a+b)(a+b)\). Теперь мы можем просто раскрыть скобки, перемножив их как делали это здесь, и привести подобные слагаемые. Получаем:

А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:

Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Пример. Раскрыть скобки: \((x+5)^2\)Решение:

Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ

Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:

Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите свойства степеней и тему приведения одночлена к стандартному виду.

Пример. Преобразуйте выражение \((1+5x)^2-12x-1 \) в многочлен стандартного вида.

Решение:

\((1+5x)^2-12x-1= \)

               

Раскроем скобки, воспользовавшись формулой квадрата суммы…

\(=1+10x+25x^2-12x-1=\)

 

…и приведем подобные слагаемые.

\(=25x^2-2x\)

 

Готово.

Ответ: \(25x^2-2x\).

Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример. Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.

Решение:

\((368)^2+2·368·132+(132)^2=\)

               

Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего

Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: \(a^2+2ab+b^2=(a+b)^2\)

\(=(368+132)^2=\)

 

Вот теперь вычислять гораздо приятнее!

\(=(500)^2=250 000.\)

 

Готово.

Ответ: \(250 000\).

Разность квадратов

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

Получили формулу:

Разность квадратов \(a^2-b^2=(a+b)(a-b)\)

Эта формула одна из наиболее часто применяемых при разложении на множители и работе с алгебраическими дробями. 

Пример. Сократите дробь \(\frac{x^2-9}{x-3}\).

Решение:

\(\frac{x^2-9}{x-3}\)\(=\)

               

Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус!
Попробуем воспользоваться формулой.

\(=\) \(\frac{x^2-3^2}{x-3}\)\(=\)\(\frac{(x+3)(x-3)}{x-3}\)\(=\)

 

Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки.

\(=x+3\)

 

Готов ответ.

Ответ: \(x+3\).

Пример.Разложите на множители \(25x^4-m^{10} t^6\). Решение:

\(25x^4-m^{10} t^6\)

               

Воспользуемся формулами степеней: \((a^n )^m=a^{nm}\) и \(a^n b^n=(ab)^n\).

\(=(5x^2 )^2-(m^5 t^3 )^2=\)

 

Ну, а теперь пользуемся формулой \(a^2-b^2=(a+b)(a-b)\), где \(a=5x^2\) и \(b=m^5 t^3\).

\(=(5x^2-m^5 t^3 )(5x^2+m^5 t^3 )\)

 

Готов ответ.

Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.

Пример (повышенной сложности!).Сократите дробь \(\frac{x^2-4xy-9+4y^2}{x-2y+3}\) . Решение:

4) Перевод алгебраической дроби в десятичную дробь

перевод алгебраической дроби в десятичную дробь

Помощь на развитие проекта premierdevelopment.ru

Спасибо, что не прошели мимо!

I. Порядок действий при сокращении алгебраической дроби калькулятором онлайн:

  1. Чтобы выполнить сокращение алгебраической дроби введите в соответствующие поля значения числителя, знаменателя дроби. Если дробь смешанная, то также заполните поле, соответствующее целой части дроби. Если дробь простая, то оставьте поле целой части пустым.
  2. Чтобы задать отрицательную дробь, поставьте знак минус в целой части дроби.
  3. В зависимости от задаваемой алгебраической дроби автоматически выполняется следующая последовательность действий:
  • определение наибольшего общего делителя (НОД) числителя и знаменателя дроби;
  • сокращение числителя и знаменателя дроби на НОД;
  • выделение целой части дроби, если числитель итоговой дроби больше знаменателя.
  • перевод итоговой алгебраической дроби в десятичную дробь с округлением до сотых.

В результате сокращения может получиться неправильная дробь. В этом случае у итоговой неправильной дроби будет выделена целая часть и итоговая дробь будет переведена в правильную дробь.

II. Для справки:

дробь
— число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенная дробь (простая дробь) записывается в виде двух чисел (числитель дроби и знаменатель дроби), разделенных горизонтальной чертой (дробной чертой), обозначающей знак деления.
числитель дроби
— число, стоящее над дробной чертой. Числитель показывает, сколько долей взяли у целого.
знаменатель дроби
— число, стоящее под дробной чертой. Знаменатель показывает, на сколько равных долей разделено целое.
простая дробь
— дробь, не имеющая целой части. Простая дробь может быть правильной или неправильной.
правильная дробь
— дробь, у которой числитель меньше знаменателя, поэтому правильная дробь всегда меньше единицы. Пример правильных дроби: 8/7, 11/19, 16/17.
неправильная дробь
— дробь, у которой числитель больше или равен знаменателю, поэтому неправильная дробь всегда больше единицы или равна ей. Пример неправильных дроби: 7/6, 8/7, 13/13.
смешанная дробь
— число, в состав которого входит целое число и правильная дробь, и обозначает сумму этого целого числа и правильной дроби. Любая смешанная дробь может быть преобразована в неправильную простую дробь. Пример смешанных дробей: 1¼, 2½, 4¾.

III. Примечание:

  1. Блок исходных данных выделен желтым цветом, блок промежуточных вычислений выделен голубым цветом, блок решения выделен зеленым цветом.
  2. Для сложения, вычитания, умножения и деления обыкновенных или смешанных дробей воспользуйтесь онлайн калькулятором дробей с подробным решением.
Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: