Онлайн-справочник — есть ли от него польза?
Ребята сейчас находятся в таком возрасте, когда их больше интересуют изменения, которые с ними происходят, а не учеба. Даже отличники начинают сдавать свои позиции, что уж говорить о более «слабых» школьниках? Тем не менее требования предъявляемые учителями все так же строги. Любые ошибки грозят снижением успеваемости. Поэтому довольно часто учащиеся прибегают к помощи «ГДЗ по Алгебре Учебник Макарычев Ю. Н. 8 класс (Просвещение)».
Справочник окажет подросткам необходимую поддержку и поможет наверстать упущенное на уроках, так как он:
- составлен опытными методистами;
- не раз был проверен на достоверность размещенных решений и ответов;
- соответствует ФГОС;
- полностью соответствует текущему курсу и дополняет собой учебник.
Польза, которую ученики получат от издания, напрямую зависит от их отношения к работе с ним. Если просто списывать номера, то особого толка от этого, естественно, не будет, ведь знания так и продолжат проходить мимо. А вот тщательная проработка материала, ежедневный самоконтроль, работа над ошибками и периодическое повторение пройденного — залог хороших оценок и полноценных навыков по одному из самых сложных предметов в программе обучения.
Раздел 2. Квадратные уравнения
2.1 Квадратное уравнение и его корни
2.12.22.32.42.52.62.72.82.9
2.102.112.122.132.142.152.162.182.192.202.212.222.232.242.252.262.272.28
2.2 Формулы корней квадратного уравнения
2.292.302.312.322.332.342.352.362.372.382.392.402.412.422.432.442.452.462.472.482.492.502.512.522.532.542.552.562.572.582.592.602.61
2.3 Теорема Виета
2.622.632.642.652.662.672.682.692.70
2.712.722.732.742.752.762.772.782.792.802.812.822.832.842.852.862.872.882.892.902.91
2.4 Свойства корней квадратного уравнения
2.922.932.942.952.962.972.982.992.1002.1012.1022.1032.1042.1052.1062.1072.1082.1092.1102.112
2.5 Решение уравнений
2.1132.1142.1152.1162.1172.1182.1192.1202.1212.1222.1232.1242.1252.1262.1272.1282.1292.130
2.6 Рациональные уравнения. Текстовые задачи, приводимые к квадратным уравнениям
2.131
2.1322.1332.1342.1352.1362.1372.1382.1392.1402.1412.1422.1432.1442.1452.1462.1472.1482.1492.1502.1512.1522.1532.1542.1552.1562.1572.1582.1592.160
2.1612.1622.1632.1642.1652.1662.1672.1682.1692.1702.1712.1722.1732.174
Чем поможет ГДЗ при изучении алгебры?
На восьмом году обучения начинается активная подготовка к предстоящим вскоре ОГЭ. Один из основных предметов для сдачи — алгебра, так что знать эту дисциплину нужно очень хорошо. К сожалению, не все школьники способны воспринять все аспекты столь непростой науки. На помощь им могут прийти «ГДЗ по Алгебре 8 класс Учебник Макарычев, Миндюк, Нешков, Суворова (Просвещение)», в которых подробно разобраны нюансы текущего материала.
В восьмом классе учащиеся будут осваивать такие темы как:
- Рациональные выражения, их преобразование.
- Дроби, действия с ними.
- Функция y=k/x и её график.
- Квадратный корень, его нахождение.
- Уравнение х 2=а.
- Теорема Виета, и т.д.
Программа этого года достаточно обширна, поэтому на освоение каждой темы отводится минимум времени. Основную часть теоретического материала ребятам приходится изучать дома
Но времени на это порой категорически не хватает, ведь нужно уделять внимание и другим предметам. Поэтому некоторые моменты школьники просто пропускают в надежде разобраться в них потом
Однако такое отношение приводит лишь к образованию пробелов в знаниях. Допускать подобного нельзя, ведь это может негативно сказаться на успеваемости и общих итогах обучения. Так что учащимся рекомендуется воспользоваться решебником, который поможет быстро вникнуть в суть всех параграфов из учебника.
Пояснения к калькулятору
- Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵.
- Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и →.
- ⌫ — удалить в поле ввода символ слева от курсора.
- C — очистить поле ввода.
- При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
- Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½, ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
- Ввод числа в n-ой степени и квадратного корня прозводится кнопками ab и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей →.
Решение интегралов
Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:∫ f(x) — для неопределенного интеграла;ba∫ f(x) — для определенного интеграла.
В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.
Примеры вычислений интегралов:
$$\int \left(\frac{x^4}{x^3-6x^2+11x-6}\right)dx$$ (найти интеграл функции)
$$\int \left(\sqrt{x\sqrt{x\sqrt{x}}}\right)dx$$ (решить интеграл)
$$\int \left(\left(x^2+3x+5\right)\cos 2x\right)dx$$ (вычислить интеграл)
$$\int \left(\frac{x+\arccos ^2\left(3x\right)}{\sqrt{1-9x^2}}\right)dx$$ (решить интеграл)
$$\int _1^{e^3}\left(\frac{1}{x\sqrt{1+\log \left(x\right)}}\right)dx$$ (найти интеграл функции)
$$\int _{\frac{\pi }{6}}^{\frac{\pi }{3}}\left(\sin 6x\sin 7x\right)dx$$ (решить интеграл)
$$\int _{+\infty }^{-\infty }\left(\frac{1}{\left(x^2+1\right)\left(x^2+4\right)}\right)dx$$ (решить интеграл)
$$\int _1^2\left(x^2+\frac{1}{x}+\frac{1}{x^3}\right)dx$$ (вычислить интеграл)
Упрощение выражений, раскрытие скобок, разложение многочленов на множители
Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.
Примеры:
$$x^4+x^2a^2+a^4$$ (разложить на множители)
$$\frac{6x^3-24x^2}{6x^3}$$ (разложить на множители)
$$(5x-2y^2)(5x+2y^2)$$ (раскрыть скобки)
$$(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)$$ (раскрыть скобки)
$$\frac{a^3-8}{a^2+2a+4}$$ (раскрыть скобки)
$$\frac{\left(\frac{2a}{2a+b}-\frac{4a^2}{4a^2+4ab+b^2}\right)}{\left(\frac{2a}{4a^2-b^2}+\frac{1}{b-2a}\right)}+\frac{8a^2}{2a+b}$$ (упростить выражение)
$$\frac{1-\sin ^4\left(x\right)-\cos ^4\left(x\right)}{2\sin ^4\left(x\right)}+1$$ (упростить выражение)
$$\left(\sqrt{a}-\frac{a}{\sqrt{a}+1}\right)\cdot \frac{a-1}{\sqrt{a}}$$ (упростить выражение)
Раздел 1. Квадратный корень и иррациональные выражения
1.1. Определение квадратного корня
Упражнение
1.11.21.31.4
1.51.61.71.81.91.101.111.121.131.141.151.161.171.181.191.201.211.221.231.241.251.261.271.281.29
1.2 Понятие иррационального числа
Упражнение
1.301.311.321.331.341.351.361.371.381.391.401.411.421.431.441.451.461.471.481.491.501.511.521.531.541.551.561.571.581.59
1.3 Соответствеи между действительными числами и точками прямой
Упражнение
1.601.611.621.631.64
1.651.661.671.681.691.701.711.721.731.741.751.761.771.781.791.801.811.821.831.841.851.861.871.881.891.90
1.4 Свойства квадратного корня
Упражнение
1.911.921.931.941.951.961.971.991.1001.1011.1021.1031.1041.1051.1061.1071.1081.1091.1101.1111.1121.1131.1141.1151.1161.1171.1181.1191.1201.1211.1221.1231.1241.125
1.1261.1271.1281.1291.130
Упражнение
1.1311.1321.1331.1341.1351.1361.1371.1381.1391.1401.1411.1421.1431.1441.1451.1461.1471.1481.1491.1501.1511.1521.1531.1541.1551.1561.1571.1581.1591.1601.1611.1621.1631.1641.1651.1661.1671.1681.1691.1701.1711.1721.1731.1741.1751.176
Упражнения:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
Действия над комплексными числами
Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i
Примеры операций с комплексными числами:
$$\frac{\left(1+i\right)\left(3+i\right)}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}$$ (найти разность комплексных чисел)
$$\left(1-i\right)^3+\left(1+i\right)^3$$ (найти сумму комплексных чисел)
$$\left(-2+3i\right)\left(5+4i\right)$$ (найти произведение комплексных чисел)
$$\frac{-5-6i}{-6i}$$ (найти частное комплексных чисел)
$$\left(-2+2i\right)^9$$ (выполнить возведение комплексного числа в степень)
$$\frac{\left(-7-8i\right)i^7}{\left(4-5i\right)\left(-3+i\right)}-\frac{4+4i}{-2-5i}$$ (выполнить действия над комплексными числами)
Алгебра 8 Мордкович (упр. 21.1 — 21.58)
§ 21. Как построить график функции у = f(x + l),
если известен график функции у = f(x)
Постройте в одной системе координат графики функций:Задание № 21.1. а) у = х2 и у = (x + 1)2; б) у = х2 и у = (x – 3)2; в) у = х2 и у = (х – 2)2; г) у = х2 и у = (х + 4)2.
Задание № 21.2. а) y = 1/x и y = 1/(х – 2); б) у = 1/х и у = 1/(х + 2); в) у = 1/x и у = 1/(x + 3); г) у = 1/х и у = 1/(х – 5).
Задание № 21.3. а) у = √х и у = √; б) у = √x и у = √; в) у = √x и у = √; г) у = √x и у = √.
Задание № 21.4. а) у = |х| и у = |х – 3|; б) у = |х| и у = |х + 5|; в) у = |x| и у = |х + 1|; г) y = |х| и у = |х – 4|.
Задание № 21.5. График какой функции получится, если:
а) параболу у = 3х2 перенести на 4 единицы влево вдоль оси Ох;
б) гиперболу у = –7/х перенести на 3 единицы вправо вдоль оси Ох;
в) график функции у = √х перенести на 2 единицы вправо вдоль оси Ох;
г) график функции у = |x| перенести на 1 единицу влево вдоль оси Ох?
Задание № 21.6. График какой функции получится, если:
а) параболу у = –х2/3 перенести на 0,5 единицы вправо вдоль оси Ох;
б) гиперболу у = 2/x перенести на 2 единицы влево вдоль оси Ох;
в) график функции у = –|х| перенести на 4 единицы вправо вдоль оси Ох;
г) график функции у = –√х перенести на 1,5 единицы влево вдоль оси Ох?
Постройте график функции и укажите, где она убывает, где возрастает:
Задание № 21.7. а) у = 2(х + 1)2; б) у =–(х – 3)2; в) у = 3(х – 5)2; г) у = –4(х + 2)2.
Задание № 21.8.
Задание № 21.9.
Задание № 21.10.
Задание № 21.11.
Задание № 21.12.
Задание № 21.13.
Задание № 21.14.
Задание № 21.15.
Задание № 21.16.
Задание № 21.17.
Задание № 21.18.
Задание № 21.19.
Задание № 21.20.
Задание № 21.21.
Задание № 21.22.
Задание № 21.23.
Задание № 21.24.
Задание № 21.25.
Задание № 21.26.
Задание № 21.27.
Задание № 21.28.
Задание № 21.29.
Задание № 21.30.
Задание № 21.31.
Задание № 21.32.
Задание № 21.33.
Задание № 21.34.
Задание № 21.35.
Задание № 21.36.
Задание № 21.37.
Задание № 21.38.
Задание № 21.39.
Задание № 21.40.
Задание № 21.41.
Задание № 21.42.
Задание № 21.43.
Задание № 21.44.
Задание № 21.45.
Задание № 21.46.
Задание № 21.47.
Задание № 21.48.
Задание № 21.49.
Задание № 21.50.
Задание № 21.51.
Задание № 21.52.
Задание № 21.53.
Задание № 21.54.
Задание № 21.55.
Задание № 21.56.
Задание № 21.57.
Задание № 21.58.
Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2020). ГЛАВА 3. Квадратичная функция. Функция у = k/x. § 21. Как построить график функции у = f(x + l), если известен график функции у = f(x). ОТВЕТЫ на упражнения 21.1 — 21.58. Вернуться в ОГЛАВЛЕНИЕ.
Просмотров: 63 544
Решение уравнений и неравенств
Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x, y, z.
Примеры решений уравнений и неравенств:
$$\frac{5}{12}+\frac{x}{6}=\frac{x}{4}+\frac{1}{3}$$ (решить уравнение)
$$x^2+12x+36=0$$ (решить уравнение)
$$\left(x+8\right)^2=x^2+8$$ (решить уравнение)
$$\left(x^2+\frac{1}{x^2}\right)+\left(x+\frac{1}{x}\right)=4$$ (решить уравнение)
$$\frac{19-x^2-4x}{49-x^2}(решить неравенство)
$$\frac{x}{3}+\frac{2x-1}{5}>2x-\frac{1}{15}$$ (решить неравенство)
$$\frac{\left(x-1\right)^2\left(x+7\right)\left(x+3\right)^3}{x^2+6x+9}\ge 0$$ (решить неравенство)
Вычисление выражений с логарифмами
В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$\log_a \left(b\right) = \frac{\log \left(b\right)}{\log \left(a\right)}$$ Например, $$\log_{3} \left(5x-1\right) = \frac{\log \left(5x-1\right)}{\log \left(3\right)}$$
Примеры решений выражений с логарифмами:
$$\log _3\left(5x-1\right)=2$$ преобразуем в $$\frac{\log \left(5x-1\right)}{\log \left(3\right)}=2$$ (решить уравнение)
$$\log _2\left(x\right)=2\log _x\left(2\right)-1$$ преобразуем в $$\frac{\log \left(x\right)}{\log \left(2\right)}=2\cdot \frac{\log \left(2\right)}{\log \left(x\right)}-1$$ (найти x в уравнении)
Алгебра 8 класс Макарычев8) Функция у = k/x и её график.Упражнения №№ 179 — 196:
Задание № 179. Функция задана формулой у = 8/x. Заполните таблицу.
x | –4 | –0,25 | 2 | 5 | 16 | ||
y | –4 | 0,4 |
Задание № 180. Обратная пропорциональность задана формулой у = 120/x. Заполните таблицу.
x | –1200 | –600 | 75 | 120 | 1000 | |||
y | –0,5 | –1 | 0,4 |
Задание № 181. Двигаясь со скоростью v км/ч, поезд проходит расстояние между городами А и В, равное 600 км, за t ч. Запишите формулу, выражающую зависимость: a) v от t; б) t от v.
Задание № 182. Обратная пропорциональность задана формулой у = 10/x. Найдите значение функции, соответствующее значению аргумента, равному 100; 1000; 0,1; 0,02. Определите, принадлежит ли графику этой функции точка А (–0,05;–200), В (–0,1; 100), С (400; 0,025), D (500; –0,02).
Задание № 183. Известно, что некоторая функция – обратная пропорциональность. Задайте её формулой, зная, что значению аргумента, равному 2, соответствует значение функции, равное 12.
Задание № 184. На рисунке 6 построен график функции, заданной формулой у = 8/x. Найдите по графику:
а) значение у, соответствующее значению х, равному 2; 4; –1; –4; –5;
б) значение х, которому соответствует значение у, равное –4; –2; 8.
Задание № 185. Постройте график функции, заданной формулой у = –8/x. Найдите по графику:
а) значение у, соответствующее значению х, равному 4; 2,5; 1,5; –1; –2,5;
б) значение х, которому соответствует значение у, равное 8; –2.
Задание № 186. Постройте график функции у = 6/x и, используя его, решите уравнение: а) 6/x = х; б) 6/x = –х + 6.
Задание № 187. Решите графически уравнение: а) 8/x = х2; б) 8/x = x3.
Задание № 188. (Для работы в парах.) Используя графические представления, выясните, сколько решений имеет уравнение:
а) k/x = х2, где k > 0; в) k/x = x3, где k > 0;
б) k/x = х2, где k < 0; г) k/x = x3, где k < 0.
1) Распределите, кто выполняет задания а) и г), а кто – задания б) и в), и выполните их.
2) Проверьте друг у друга, верно ли построены графики функции у = k/x.
3) Обсудите правильность сделанных выводов о числе решений уравнения.
Задание № 189. Прямоугольный параллелепипед со сторонами основания а см и b см и высотой 20 см имеет объём, равный 120 см3. Выразите формулой зависимость b от а. Является ли эта зависимость обратной пропорциональностью? Какова область определения этой функции? Постройте график.
Задание № 190. Задайте формулой обратную пропорциональность, зная, что её график проходит через точку:
а) А (8; 0,125); б) В(2/3; 1 4/5); в) С(–25; –0,2).
Задание № 191. На рисунке 7 построен график зависимости времени, затрачиваемого на путь из пункта А в пункт В, от скорости движения. С помощью графика ответьте на вопросы:
а) Сколько времени потребуется на путь из А в В при скорости движения 80 км/ч? 25 км/ч? 40 км/ч?
б) С какой скоростью надо двигаться, чтобы добраться из пункта А в пункт В за 1 ч? за 4 ч? за 8 ч? за 16 ч?
в) Каково расстояние между пунктами А и В?
Задание № 192. Определите знак числа k, зная, что график функции у = k/x расположен:
а) в первой и третьей координатных четвертях;
б) во второй и четвёртой координатных четвертях.
Задание № 193. На рисунке 8 построен график одной из следующих функций:
1) у = –5/x; 2) у = –3/x; 3) у = 3/x; 4) у = 5/x.
Укажите эту функцию.
Задание № 194. .
Задание № 195. (Задача–исследование.) При каких значениях а и b является тождеством равенство (5x + 31)/((x – 5)(x + 2)) = a/(x – 5) + b/(x + 2) ?
а) Обсудите, какие преобразования надо выполнить и каким условием воспользоваться, чтобы ответить на вопрос задачи.
б) Выполните необходимые преобразования, составьте систему уравнений и решите её.
в) Ответьте на вопрос задачи и проверьте полученный ответ.
Задание № 196. .
Вы смотрели: Алгебра 8 класс УМК Макарычев. Упражнения из учебника с ответами и решениями. Глава 1. Рациональные дроби. п.8) Функция у = k/x и её график. Алгебра 8 Макарычев Упражнения 179-196 + ОТВЕТЫ.
Просмотров: 3 157