Номер 600

Гдз решебник по алгебре 8 класс макарычев, миндюк, нешков учебник просвещение

Раздел 2. Квадратные уравнения

2.1 Квадратное уравнение и его корни

2.12.22.32.42.52.62.72.82.9

2.102.112.122.132.142.152.162.182.192.202.212.222.232.242.252.262.272.28

2.2 Формулы корней квадратного уравнения

2.292.302.312.322.332.342.352.362.372.382.392.402.412.422.432.442.452.462.472.482.492.502.512.522.532.542.552.562.572.582.592.602.61

2.3 Теорема Виета

2.622.632.642.652.662.672.682.692.70

2.712.722.732.742.752.762.772.782.792.802.812.822.832.842.852.862.872.882.892.902.91

2.4 Свойства корней квадратного уравнения

2.922.932.942.952.962.972.982.992.1002.1012.1022.1032.1042.1052.1062.1072.1082.1092.1102.112

2.5 Решение уравнений

2.1132.1142.1152.1162.1172.1182.1192.1202.1212.1222.1232.1242.1252.1262.1272.1282.1292.130

2.6 Рациональные уравнения. Текстовые задачи, приводимые к квадратным уравнениям

2.131

2.1322.1332.1342.1352.1362.1372.1382.1392.1402.1412.1422.1432.1442.1452.1462.1472.1482.1492.1502.1512.1522.1532.1542.1552.1562.1572.1582.1592.160

2.1612.1622.1632.1642.1652.1662.1672.1682.1692.1702.1712.1722.1732.174

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ. И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

Алгоритм решения дробно-рационального уравнения:

  1. Выпишите и «решите» ОДЗ.

  2. Найдите общий знаменатель дробей.

  3. Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

  4. Запишите уравнение, не раскрывая скобок.

  5. Раскройте скобки и приведите подобные слагаемые.

  6. Решите полученное уравнение.

  7. Проверьте найденные корни с ОДЗ.

  8. Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

Пример. Решите дробно-рациональное уравнение \(\frac{x}{x-2} — \frac{7}{x+2}=\frac{8}{x^2-4}\)

Решение:

\(\frac{x}{x-2} — \frac{7}{x+2}=\frac{8}{x^2-4}\)
ОДЗ:   \(x-2≠0⇔x≠2\)
\(x+2≠0 ⇔x≠-2\)
\(x^2-4≠0⇔ x≠±2\)

Сначала записываем и «решаем» ОДЗ.

\(\frac{x}{x-2} — \frac{7}{x+2}=\frac{8}{x^2-4}\)

 

По формуле сокращенного умножения: \(x^2-4=(x-2)(x+2)\). Значит, общий знаменатель дробей будет \((x-2)(x+2)\). Умножаем каждый член уравнения на \((x-2)(x+2)\).

\(\frac{x(x-2)(x+2)}{x-2} — \frac{7(x-2)(x+2)}{x+2}=\frac{8(x-2)(x+2)}{(x-2)(x+2)}\)

 

Сокращаем то, что можно и записываем получившееся уравнение.

\(x(x+2)-7(x-2)=8\)

 

Раскрываем скобки

\(x^2+2x-7x+14=8\)

Приводим подобные слагаемые

\(x^2-5x+6=0\)

Решаем полученное квадратное уравнение.

\(x_1=2;\)            \(x_2=3\)

Согласуем корни с ОДЗ. Замечаем, что по ОДЗ \(x≠2\). Значит первый корень — посторонний. В ответ записываем только второй.

Ответ: \(3\).

Пример. Найдите корни дробно-рационального уравнения \(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\)\(=0\)

Решение:

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\)\(=0\)
ОДЗ: \(x+2≠0⇔x≠-2\)
\(x+5≠0 ⇔x≠-5\)
\(x^2+7x+10≠0\)
\(D=49-4 \cdot 10=9\)
\(x_1≠\frac{-7+3}{2}=-2\)
\(x_2≠\frac{-7-3}{2}=-5\)

Записываем и «решаем» ОДЗ.
Раскладываем   квадратный трехчлен \(x^2+7x+10\) на  множители по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
Благо \(x_1\) и \(x_2\) мы уже нашли.

\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\)\(=0\)

 

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

\(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\)
\(-\frac{(7-x)(x+2)(x+5)}{(x+2)(x+5)}\)\(=0\)

 

Сокращаем дроби

\(x(x+5)+(x+1)(x+2)-7+x=0\)

 

Раскрываем скобки

\(x^2+5x+x^2+3x+2-7+x=0\)

Приводим подобные слагаемые

\(2x^2+9x-5=0\)

Находим корни уравнения

\(x_1=-5;\)        \(x_2=\frac{1}{2}.\)

Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Ответ: \(\frac{1}{2}\).

Раздел 1. Квадратный корень и иррациональные выражения

1.1. Определение квадратного корня

Упражнение

1.11.21.31.4

1.51.61.71.81.91.101.111.121.131.141.151.161.171.181.191.201.211.221.231.241.251.261.271.281.29

1.2 Понятие иррационального числа

Упражнение

1.301.311.321.331.341.351.361.371.381.391.401.411.421.431.441.451.461.471.481.491.501.511.521.531.541.551.561.571.581.59

1.3 Соответствеи между действительными числами и точками прямой

Упражнение

1.601.611.621.631.64

1.651.661.671.681.691.701.711.721.731.741.751.761.771.781.791.801.811.821.831.841.851.861.871.881.891.90

1.4 Свойства квадратного корня

Упражнение

1.911.921.931.941.951.961.971.991.1001.1011.1021.1031.1041.1051.1061.1071.1081.1091.1101.1111.1121.1131.1141.1151.1161.1171.1181.1191.1201.1211.1221.1231.1241.125

1.1261.1271.1281.1291.130

Упражнение

1.1311.1321.1331.1341.1351.1361.1371.1381.1391.1401.1411.1421.1431.1441.1451.1461.1471.1481.1491.1501.1511.1521.1531.1541.1551.1561.1571.1581.1591.1601.1611.1621.1631.1641.1651.1661.1671.1681.1691.1701.1711.1721.1731.1741.1751.176

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: