Раздел 2. Квадратные уравнения
2.1 Квадратное уравнение и его корни
2.12.22.32.42.52.62.72.82.9
2.102.112.122.132.142.152.162.182.192.202.212.222.232.242.252.262.272.28
2.2 Формулы корней квадратного уравнения
2.292.302.312.322.332.342.352.362.372.382.392.402.412.422.432.442.452.462.472.482.492.502.512.522.532.542.552.562.572.582.592.602.61
2.3 Теорема Виета
2.622.632.642.652.662.672.682.692.70
2.712.722.732.742.752.762.772.782.792.802.812.822.832.842.852.862.872.882.892.902.91
2.4 Свойства корней квадратного уравнения
2.922.932.942.952.962.972.982.992.1002.1012.1022.1032.1042.1052.1062.1072.1082.1092.1102.112
2.5 Решение уравнений
2.1132.1142.1152.1162.1172.1182.1192.1202.1212.1222.1232.1242.1252.1262.1272.1282.1292.130
2.6 Рациональные уравнения. Текстовые задачи, приводимые к квадратным уравнениям
2.131
2.1322.1332.1342.1352.1362.1372.1382.1392.1402.1412.1422.1432.1442.1452.1462.1472.1482.1492.1502.1512.1522.1532.1542.1552.1562.1572.1582.1592.160
2.1612.1622.1632.1642.1652.1662.1672.1682.1692.1702.1712.1722.1732.174
Как решаются дробно-рациональные уравнения?
Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ. И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.
Алгоритм решения дробно-рационального уравнения:
-
Выпишите и «решите» ОДЗ.
-
Найдите общий знаменатель дробей.
-
Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.
-
Запишите уравнение, не раскрывая скобок.
-
Раскройте скобки и приведите подобные слагаемые.
-
Решите полученное уравнение.
-
Проверьте найденные корни с ОДЗ.
-
Запишите в ответ корни, которые прошли проверку в п.7.
Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.
Пример. Решите дробно-рациональное уравнение \(\frac{x}{x-2} — \frac{7}{x+2}=\frac{8}{x^2-4}\)
Решение:
\(\frac{x}{x-2} — \frac{7}{x+2}=\frac{8}{x^2-4}\) |
Сначала записываем и «решаем» ОДЗ. |
|
\(\frac{x}{x-2} — \frac{7}{x+2}=\frac{8}{x^2-4}\) |
По формуле сокращенного умножения: \(x^2-4=(x-2)(x+2)\). Значит, общий знаменатель дробей будет \((x-2)(x+2)\). Умножаем каждый член уравнения на \((x-2)(x+2)\). |
|
\(\frac{x(x-2)(x+2)}{x-2} — \frac{7(x-2)(x+2)}{x+2}=\frac{8(x-2)(x+2)}{(x-2)(x+2)}\) |
Сокращаем то, что можно и записываем получившееся уравнение. |
|
\(x(x+2)-7(x-2)=8\) |
Раскрываем скобки |
|
\(x^2+2x-7x+14=8\) |
Приводим подобные слагаемые |
|
\(x^2-5x+6=0\) |
Решаем полученное квадратное уравнение. |
|
\(x_1=2;\) \(x_2=3\) |
Согласуем корни с ОДЗ. Замечаем, что по ОДЗ \(x≠2\). Значит первый корень — посторонний. В ответ записываем только второй. |
Ответ: \(3\).
Пример. Найдите корни дробно-рационального уравнения \(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\)\(=0\)
Решение:
\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{x^2+7x+10}\)\(=0\) |
Записываем и «решаем» ОДЗ. |
|
\(\frac{x}{x+2} + \frac{x+1}{x+5}-\frac{7-x}{(x+2)(x+5)}\)\(=0\) |
Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение. |
|
\(\frac{x(x+2)(x+5)}{x+2} + \frac{(x+1)(x+2)(x+5)}{x+5}-\) |
Сокращаем дроби |
|
\(x(x+5)+(x+1)(x+2)-7+x=0\) |
Раскрываем скобки |
|
\(x^2+5x+x^2+3x+2-7+x=0\) |
Приводим подобные слагаемые |
|
\(2x^2+9x-5=0\) |
Находим корни уравнения |
|
\(x_1=-5;\) \(x_2=\frac{1}{2}.\) |
Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. |
Ответ: \(\frac{1}{2}\).
Раздел 1. Квадратный корень и иррациональные выражения
1.1. Определение квадратного корня
Упражнение
1.11.21.31.4
1.51.61.71.81.91.101.111.121.131.141.151.161.171.181.191.201.211.221.231.241.251.261.271.281.29
1.2 Понятие иррационального числа
Упражнение
1.301.311.321.331.341.351.361.371.381.391.401.411.421.431.441.451.461.471.481.491.501.511.521.531.541.551.561.571.581.59
1.3 Соответствеи между действительными числами и точками прямой
Упражнение
1.601.611.621.631.64
1.651.661.671.681.691.701.711.721.731.741.751.761.771.781.791.801.811.821.831.841.851.861.871.881.891.90
1.4 Свойства квадратного корня
Упражнение
1.911.921.931.941.951.961.971.991.1001.1011.1021.1031.1041.1051.1061.1071.1081.1091.1101.1111.1121.1131.1141.1151.1161.1171.1181.1191.1201.1211.1221.1231.1241.125
1.1261.1271.1281.1291.130
Упражнение
1.1311.1321.1331.1341.1351.1361.1371.1381.1391.1401.1411.1421.1431.1441.1451.1461.1471.1481.1491.1501.1511.1521.1531.1541.1551.1561.1571.1581.1591.1601.1611.1621.1631.1641.1651.1661.1671.1681.1691.1701.1711.1721.1731.1741.1751.176