Номер 57

Калькулятор дробей онлайн (с подробным решением)

Каковы этапы упрощения выражений

  • Шаг 1: Определите выражение, которое нужно упростить. Правильное выражение должно содержать числа и символы типа ‘x’ (которые представляют числа)
  • Шаг 2: Проверьте согласованность выражения. То есть, убедитесь, что любая открывающая скобка имеет закрывающую скобку, и что все операции завершены
  • Шаг 3: Начните изнутри наружу, используя PEMDAS в качестве руководящего правила. Сначала упростите более простые термины

Говоря о том, что вы должны проверить «полноту» операций, я имею в виду, что необходимо убедиться, что все операции имеют все свои компоненты. Например, при сложении вам нужны два числа и знак ‘+’.

Таким образом, что-то вроде ‘3+4’ является полной операцией, но в чем-то вроде ‘3+’ или ‘+3’ не хватает цифры. Или что-то вроде ‘2 3’ не имеет ‘+’, поэтому PEMDAS не может определить, какую операцию вы выполняете.

Существуют некоторые паллиативные правила, такие как

неявное умножение

, который будет считать, что в отсутствие операции пробел будет рассматриваться как ‘*’, так что тогда ‘2 3’ будет рассматриваться как ‘2*3’

В случае с нашим

упростить калькулятор

если выражение неполное или недействительное, оно сообщит вам об этом, чтобы вы могли его исправить.

Зачем нужно упрощать выражения?

Многие волшебные вещи в математике спрятаны на виду. Выражение может ни о чем вам не говорить, но после упрощения вы можете внезапно увидеть все ясно. Кроме того, упрощение — это как устранение беспорядка, а мы все этого хотим, верно?

Кроме того, упрощение выражений — это способ сэкономить работу, потому что часто нужно получить один результат, а затем подставить его в другое выражение и продолжать расширять этот процесс.

Таким образом, если у вас есть начальное выражение, которое вы не упростили, вы будете иметь ненужный багаж для последующих операций. Это может стать большой проблемой, если у вас есть потенциальный

упрощение тригонометрии

например,

Если вы пропустите этот \(\left \sin^2 x + \cos^2 x \right)^3 = 1^3 = 1\), то в итоге получите неоправданно долгий срок, который можно значительно упростить.

Учитывая это, всегда старайтесь

упрощать дроби

, а также

упрощайте алгебраические выражения

в целом, так как это обычно приводит к экономии времени в дальнейшем.

Пример: упростить выражение

Упростите следующее числовое выражение: \(\frac{2}{3} + \frac{5}{4} — \left(\frac{5}{6}\right)\cdot \left(\frac{8}{7}\right)\)

Отвечать:

Нам нужно упростить следующее выражение: \(\displaystyle \frac{2}{3}+\frac{5}{4}-\frac{5}{6}\cdot\frac{8}{7}\).

Получается следующий расчет:

\( \displaystyle \frac{2}{3}+\frac{5}{4}-\frac{ 5}{ 6} \cdot \frac{ 8}{ 7}\)

Start multiplying all the numerators and all the denominators, and we get \(\displaystyle-\frac{ 5}{ 6} \times \frac{ 8}{ 7}= \frac{ -5 \times 8}{ 6 \times 7} \)

\( = \,\,\)

\(\displaystyle \frac{2}{3}+\frac{5}{4}+\frac{\left(\left(-5\right)\cdot 8\right)}{6\cdot 7}\)

Factoring out the number \(\displaystyle 2\) in the numerator and denominator of \(\displaystyle \frac{ -5 \times 8}{ 6 \times 7}\)

\( = \,\,\)

\(\displaystyle \frac{2}{3}+\frac{5}{4}-\frac{5\cdot 4}{3\cdot 7}\)

After canceling out the common factors from the top and bottom

\( = \,\,\)

\(\displaystyle \frac{2}{3}+\frac{5}{4}-\frac{20}{21}\)

Amplifying in order to get the common denominator 84

\( = \,\,\)

\(\displaystyle \frac{2}{3}\cdot\frac{28}{28}+\frac{5}{4}\cdot\frac{21}{21}-\frac{20}{21}\cdot\frac{4}{4}\)

We need to use the common denominator: 84

\( = \,\,\)

\(\displaystyle \frac{2\cdot 28+5\cdot 21-20\cdot 4}{84}\)

Expanding each term in the numerator: \(2 \times 28+5 \times 21-20 \times 4 = 56+105-80\)

\( = \,\,\)

\(\displaystyle \frac{56+105-80}{84}\)

Operating the terms in the numerator

\( = \,\,\)

\(\displaystyle \frac{81}{84}\)

We can factor out 3 for both the numerator and denominator.

\( = \,\,\)

\(\displaystyle \frac{3\cdot 27}{3\cdot 28}\)

Now we cancel 3 out from the numerator and denominator.

\( = \,\,\)

\(\displaystyle \frac{27}{28}\)

что завершает процесс упрощения.

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю», поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

  1. Тест к уроку «Сложение и вычитание дробей» (легкий)
  2. Приведение дробей к общему знаменателю
  3. Тест к уроку «Десятичные дроби» (1 вариант)
  4. Метод узлов в задаче B5
  5. Задача B5: площадь кольца
  6. Сфера, вписанная в куб

Калькулятор упрощения выражений

Этот калькулятор позволит вам упростить предоставленные вами выражения, показывая все шаги. Вам необходимо ввести правильное числовое или символьное выражение. Например, допустимым числовым выражением будет что-то вроде 1/3+1/4*3^2, а допустимым символьным выражением может быть что-то вроде x^2 — 2x + 3/4 x +2′, или что-то вроде ‘(x^2-1)(x-1)’, просто для примера.

Как только вы введете правильное выражение, все, что вам нужно сделать, это нажать кнопку «Рассчитать», которая находится прямо под ним, и вам будут показаны все соответствующие этапы процесса.

Некоторые упрощения легче провести, чем другие. Некоторые выражения легко поддаются упрощению, другие — нет. Для упрощения некоторых алгебраических выражений потребуются длительные и трудоемкие действия, а другие просто невозможно упростить.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь». Если не помните — обязательно повторите. Примеры:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Как упростить?

Упрощение — это не обязательно простой процесс, который заключается в группировке терминов с целью сокращения данного выражения. Однако процесс группировки не является произвольным и подчиняется некоторым строгим правилам и ограничениям, которые можно свести к 6 буквам:

PEMDAS

. У нас есть:

P = Круглые Скобки

E = Экспоненты

M = Умножение

D = Подразделение

A = Добавление

S = Вычитание

Итак, выражение состоит из элементов, таких как числа или неизвестные переменные, например ‘x’, которые представляют число, и различных операций, которые их объединяют. PEMDAS показывает нам, какие операции следует выполнять в первую очередь. То есть сначала вы работаете со скобками, затем с экспонентами, потом выполняете умножение и так далее.

Как добраться до простейшей формы?

Наш

Калькулятор упрощения выражений

будут стремиться к тому, чтобы обеспечить простейшую форму выражения. Иногда это ясная задача, но иногда нет.

Итак, начнем с того, что формул для упрощения выражения не существует, это скорее процесс. Кроме того, необходимо четко понимать, что мы имеем в виду под словами

простейшая форма

. Например, рассмотрим это выражение:

Можно утверждать, что это самая простая форма. Почему? Потому что на первый взгляд нет очевидных способов группировать эти термины дальше. Но потом кто-то может сказать: «Подождите, у меня есть вот это»

Итак, что же является самой простой формой? \(x^2 + 3x + 2\) или \((x+2)(x+1)\)? В этом калькуляторе мы идем путем расширения и упрощения, поэтому «простейшей формой» будет \(x^2 + 3x + 2\).

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: