Алгебра 8 мордкович (упр. 1.1

Гдз по алгебре за 8 класс макарычев ю.н.

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =

2. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число в восьмиричную систему счисления.Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421Проверка: = = = , результат совпал. Значит перевод выполнен правильно.Ответ: =

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число в двоичную систему счисления.Решение: (0 — целая часть, которая станет первой цифрой результата), (0 — вторая цифра результата), (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).Ответ: =

Алгебра 8 Мордкович (упр. 1.1 — 1.41)

§ 1. Основные понятия

Является ли алгебраической дробью выражение:

№ 1.1.  а) 3a2/5b2;   б) (10×2 + 4x – 7)/8;   в) c2/b2;   г) 3/(9m – 5) ?

№ 1.2. а) (7a2 + 4)/14;   б) (2f2 + 6f + 15)/2f – 5f;   в) 3t – p2/t2;   г) (6nm + 3m2n2)/(7n – 12m).

Найдите значение алгебраической дроби:

№ 1.3. а) (x – 2)/x при x = 3;   б) (t – 7)2/2s при t = 4, s = –1;   в) (y + 6)/(y – 2) при y = 4;   г) (x – 5)/(2y + 3)2 при x = 2, y = –2.

№ 1.4. а) (p + 8)2/(p2 + 4) при p = –2;   б) …

Установите, при каких значениях переменной не имеет смысла алгебраическая дробь:

№ 1.5. а) (а – 5)/(а + 5);  б) 5с/(4 + 10с); в) …

№ 1.6.  a) 9х2/(x(x + 2));   б) …

№ 1.7.  a) (3а2 + 5) / ((а + 2)(а + 3));   б) …

№ 1.8. Найдите допустимые значения переменной для заданной алгебраической дроби:

№ 1.9. Придумайте примеры алгебраических дробей, которые имели бы смысл при: а) х ≠ 3;  б) у ≠ 0, у ≠ 12;   в) z ≠ –4, z ≠ –7, z ≠ 0;   г) любом значении х.

Найдите значения переменной, при которых алгебраическая дробь равна нулю (если такие значения существуют):

№ 1.10.

№ 1.11.

№ 1.12. Зная, что a – 2b = 3, найдите значение выражения: а) 2b – а; б) 2а – 4b; в) (4b – 2a)/3; г) 6/(2a – 4b). Составьте математическую модель ситуации, описанной в условии задачи:

№ 1.13. Туристы прошли 6 км по лесной тропе, а затем 10 км по шоссе, увеличив при этом свою скорость на 1 км/ч. На весь путь они затратили 3,5 ч.

№ 1.14. Прогулочный катер двигался по реке, скорость течения которой 2 км/ч. По течению реки он проплыл 18 км, а против течения 14 км, затратив на весь путь 1 ч 20 мин.

№ 1.15. Из пункта А в пункт В, находящийся на расстоянии 120 км от пункта А, выехали одновременно два автомобиля. Скорость одного из них на 20 км/ч больше скорости другого, поэтому он приехал в пункт В на 1 ч раньше.

№ 1.16. Из города в посёлок, находящийся на расстоянии 40 км от города, выехал грузовик, а через 10 мин вслед за ним отправился легковой автомобиль, скорость которого на 20 км/ч больше скорости грузовика. В посёлок они прибыли одновременно.

№ 1.17. С двух турбаз одновременно вышли две группы туристов, которые должны были встретиться на берегу реки. До этого места первой группе нужно идти 12 км, а второй – 10 км. Известно, что скорость первой группы была на 1 км/ч меньше скорости второй и что она прибыла на берег реки на 1 ч позже второй группы.

Решите задачу, выделяя три этапа математического моделирования:

№ 1.18. Моторная лодка, собственная скорость которой равна 30 км/ч, прошла по течению реки расстояние 48 км и против течения 42 км. Какова скорость течения реки, если известно, что на путь по течению лодка затратила столько же времени, сколько на путь против течения?

№ 1.19. Автобус проходит расстояние 160 км за время, которое автомобиль тратит на прохождение 280 км. Найдите скорость автобуса, если известно, что она на 30 км/ч меньше скорости автомобиля.

Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2020). ЗГлава I Алгебраические дроби. § 1. Основные понятия. ОТВЕТЫ на упражнения 1.1 — 1.41. Вернуться в ОГЛАВЛЕНИЕ.

Просмотров: 93 052

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: