Как нужно пользоваться решебником
Восьмиклассники считают себя достаточно взрослыми, чтобы не обращаться к родителям за помощью, если вдруг во время выполнения домашнего задания у них возникают сложности. Особенно теперь, когда у них есть доступ к ГДЗ по алгебре 8 класс. Однако некоторые школьники считают, что наличие сборника дает им право просто списывать решения, не особо вникая в их смысл. Такой подход в корне неверен, ведь совсем скоро приведет к существенному падению успеваемости. Кроме того, подросток останется без важных знаний, нагнать которые будет практически невозможно.
Чтобы не доводить до подобных критических ситуаций, стоит с самого начала подойти правильно к работе с решебником:
- Внимательно прочитать теорию из учебника.
- Самостоятельно выполнить все заданные номера.
- Проверить себя по ГДЗ.
- Если есть расхождения, проследить весь путь решения, чтобы понять, почему возникла ошибка.
- Закрепить результат.
Нетерпеливым ученикам может показаться, что такой путь отнимает очень много времени, но на самом деле это не так. Зато можно не сомневаться, что д/з будет сделано правильно. Кроме того, пройденный материал намного лучше осядет в памяти, что позволит использовать свои знания в любой необходимый момент, будь то внеплановые контрольные или тесты.
Хорошие результаты в учебе с ГДЗ Мерзляк
В наше время программа по всем предметам настолько объемна, что многое школьники вынуждены проходить самостоятельно. Однако, учитывая нагрузки, у них не всегда имеется на это время. А ведь есть еще и дополнительные секции, на которые ходит очень много ребят! Как же успеть все сделать, да при этом еще и отдохнуть? Ответ очень прост — использовать ГДЗ.
Такой подход уже применяется тысячами учащихся. Многие не только стали все успевать, но и выбились в отличники, так как начали лучше понимать материал предмета. Так как алгебра является одной из основных школьных дисциплин, которая будет так же востребована и в будущем, то механическое заучивание в данном случае ничего не даст. Необходимо именно разобраться в тонкостях всех правил и формул, чтобы не испытывать потом проблем при ответах у доски или при написании проверочных работ.
Периодическое использование ГДЗ по алгебре 8 класс Мерзляк позволит ученикам:
- вовремя выполнять д/з;
- не тратить много времени на работу над ошибками;
- лучше ориентироваться в текущей программе.
Кроме того, наблюдается существенное улучшение психологического состояния ребят, так как им не приходится больше нервничать и переживать по пустякам, просить о помощи родителей, мучаться из-за того, что какая-то формула совершенно непонятна, долго сидеть над одной задачей. Подростки становятся более собранными, уверенными в себе, активными на уроке и покойными во время контрольных. К тому же, решебники позволяет заранее подготовиться ко всем тестированиям, так как вся необходимая информация всегда находится под рукой. Многие учащиеся просматривают онлайн-сборники непосредственно перед уроком, чтобы освежить свою память. Таким образом, они получают хорошие оценки и прочные знания.
ГЛАВА 3. Квадратные уравнения
§19. Квадратные уравнения. Решение неполных квадратных уравнений
Вопросы
1. Какое уравнение называют линейным?
Ответ:
2. Какое уравнение называют уравнением первой степени?
Ответ:
3. Приведите пример линейного уравнения, являющегося уравнением первой степени, и пример линейного уравнения, которое не является уравнением первой степени.
Ответ:
4. Какое уравнение называют квадратным?
Ответ:
5. Как называют коэффициенты квадратного уравнения $ax^2 + bx + c = 0$?
Ответ:
6. Какое квадратное уравнение называют приведенным?
Ответ:
7. Какое квадратное уравнение называют неполным?
Ответ:
8. Какие существуют виды неполных квадратных уравнений? Какие корни имеет уравнение каждого вида?
Ответ:
Упражнения для повторения курса алгебры 8 класс
839. Найдите значение выражения:1) $\frac{3m — n}{m + 2n}$, если m = −4, n = 3;2) $\frac{a^2 — 2a}{4a + 2}$, если a = −0,8.
Решение:
840. При каких значениях переменной имеет смысл выражение:1) 7b − 11;2) $\frac{9}{x}$;3) $\frac{5}{2 — y}$;4) $\frac{m — 3}{7}$;5) $\frac{3 + t}{4 — t}$;6) $\frac{2x}{x — 1} — \frac{3}{x — 6}$;7) $\frac{5}{x^8 + 3}$;8) $\frac{x — 2}{|x| + 7}$;9) $\frac{4}{x^2 — 25}$;10) $\frac{3}{|x| — 5}$;11) $\frac{x}{8 + \frac{4}{x}}$;12) $\frac{5}{6 — \frac{2}{x}}$;13) $\frac{1}{(x — 3)(x — 4)}$;14) $\frac{x + 8}{(x + 8)(x — 3)}$?
Решение:
841. Сократите дробь:1) $\frac{8a^2c^3}{4a^3c^2}$;2) $\frac{25mn^2}{75m^8n}$;3) $\frac{60a^3bc^2d^5}{18a^4b^2c^6d}$;4) $\frac{42x^8y^9}{14x^6y^3}$.
Решение:
842. Представьте частное в виде дроби и сократите полученную дробь:1) $4mn^2p : (28m^2np^6)$;2) $-30x^5y^3 : (36x^4y^8)$;3) $-63xy^9 : (-72xy^7)$.
Решение:
843. Сократите дробь:1) $\frac{3x — 6y}{3x}$;2) $\frac{3a + 9b}{4a + 12b}$;3) $\frac{a^2 — 49}{3a + 21}$;4) $\frac{12x^2 — 4x}{2 — 6x}$;5) $\frac{x^2 — 9}{x^2 + 6x + 9}$;6) $\frac{b^7 + b^4}{b^2 + b^5}$;7) $\frac{a^3 + 64}{3a + 12}$;8) $\frac{xb — 5y + 5b — xy}{x^2 — 25}$;9) $\frac{7m^2 — 7m + 7}{14m^3 + 14}$;10) $\frac{a^2 + bc — b^2 + ac}{ab + c^2 + ac — b^2}$;11) $\frac{20mn^2 — 20m^2n + 5m^3}{10mn — 5m^2}$;12) $\frac{x^2 — yz + xz — y^2}{x^2 + yz — xz — y^2}$.
Решение:
844. Найдите значение выражения:1) $\frac{x^5y^7 — x^3y^9}{x^3y^7}$, если x = −0,2, y = 0,5;2) $\frac{4a^2 — 36}{5a^2 — 30a + 45}$, если a = 2;3) $\frac{(3a + 3b)^2}{3a^2 — 3b^2}$, если $a = \frac{1}{3}, b = -\frac{1}{6}$;4) $\frac{20x^2 — 140xy + 245y^2}{4x — 14y}$, если 2x − 7y = −0,5.
Решение:
ГЛАВА 2. Квадратные корни. Действительные числа
§11. Функция y = x^2 и ее график
Вопросы
1. Что является областью определения функции $y = x^2$?
Ответ:
2. Что является областью значений функции $y = x^2$?
Ответ:
3. При каком значении аргумента значение функции $y = x^2$ равно нулю?
Ответ:
4. Какая фигура является графиком функции $y = x^2$?
Ответ:
5. Как называют функцию, которая при противоположных значениях аргумента принимает равные значения?
Ответ:
6. Какая прямая является осью симметрии параболы $y = x^2$?
Ответ:
Упражнения
350. Функция задана формулой $y = x^2$. Найдите:1) значение функции, если значение аргумента равно:−6; 0,8; −1,2; 150;2) значение аргумента, при котором значение функции равно:49; 0; 2500; 0,04.
Решение:
351. Не выполняя построения графика функции $y = x^2$, определите, проходит ли этот график через точку:1) A(−8; 64);2) B(−9; −81);3) C(0,5; 2,5);4) D(0,1; 0,01).
Решение:
ГЛАВА 1. Рациональные выражения
§1. Рациональные дроби
Вопросы
1. Чем отличаются дробные выражения от целых?
Ответ:
2. Как вместе называют целые и дробные выражения?
Ответ:
3. Какие значения переменных называют допустимыми?
Ответ:
4. Какие дроби называют рациональными?
Ответ:
5. Отдельным видом каких выражений являются рациональные дроби?
Ответ:
6. Какой многочлен не может быть знаменателем рациональной дроби?
Ответ:
Упражнения
1. Какие из выражений$\frac{3a^2}{4b^3}$,$\frac{5x^2}{4} + \frac{x}{7}$,$\frac{8}{6n + 1}$,$3a — \frac{b^2}{c^4}$,$\frac{t^2 — 6t + 15}{2t}$,$\frac{x — 2}{x + 2}$,$\frac{1}{6}m^3n^5$,$(y — 4)^3 + \frac{1}{y}$,$\frac{m^2 — 3mn}{18}$являются:1) целыми выражениями;2) дробными выражениями;3) рациональными дробями?
Решение:
2. Чему равно значение дроби $\frac{c^2 — 4c}{2c + 1}$, если:1) c = −3;2) c = 0?
Решение:
3. Найдите значение выражения $\frac{2m — n}{3m + 2n}$, если:1) m = −1, n = 1;2) m = 4, n = −5.
Решение:
4. Чему равно значение выражения:1) $\frac{a^2 — 1}{a — 5}$ при a = −4;2) $\frac{x + 3}{y} — \frac{y}{x + 2}$ при x = −5, y = 6?
Решение: