Действия над комплексными числами
Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i
Примеры операций с комплексными числами:
$$\frac{\left(1+i\right)\left(3+i\right)}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}$$ (найти разность комплексных чисел)
$$\left(1-i\right)^3+\left(1+i\right)^3$$ (найти сумму комплексных чисел)
$$\left(-2+3i\right)\left(5+4i\right)$$ (найти произведение комплексных чисел)
$$\frac{-5-6i}{-6i}$$ (найти частное комплексных чисел)
$$\left(-2+2i\right)^9$$ (выполнить возведение комплексного числа в степень)
$$\frac{\left(-7-8i\right)i^7}{\left(4-5i\right)\left(-3+i\right)}-\frac{4+4i}{-2-5i}$$ (выполнить действия над комплексными числами)
Решение интегралов
Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:∫ f(x) — для неопределенного интеграла;ba∫ f(x) — для определенного интеграла.
В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.
Примеры вычислений интегралов:
$$\int \left(\frac{x^4}{x^3-6x^2+11x-6}\right)dx$$ (найти интеграл функции)
$$\int \left(\sqrt{x\sqrt{x\sqrt{x}}}\right)dx$$ (решить интеграл)
$$\int \left(\left(x^2+3x+5\right)\cos 2x\right)dx$$ (вычислить интеграл)
$$\int \left(\frac{x+\arccos ^2\left(3x\right)}{\sqrt{1-9x^2}}\right)dx$$ (решить интеграл)
$$\int _1^{e^3}\left(\frac{1}{x\sqrt{1+\log \left(x\right)}}\right)dx$$ (найти интеграл функции)
$$\int _{\frac{\pi }{6}}^{\frac{\pi }{3}}\left(\sin 6x\sin 7x\right)dx$$ (решить интеграл)
$$\int _{+\infty }^{-\infty }\left(\frac{1}{\left(x^2+1\right)\left(x^2+4\right)}\right)dx$$ (решить интеграл)
$$\int _1^2\left(x^2+\frac{1}{x}+\frac{1}{x^3}\right)dx$$ (вычислить интеграл)
Упрощение выражений, раскрытие скобок, разложение многочленов на множители
Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.
Примеры:
$$x^4+x^2a^2+a^4$$ (разложить на множители)
$$\frac{6x^3-24x^2}{6x^3}$$ (разложить на множители)
$$(5x-2y^2)(5x+2y^2)$$ (раскрыть скобки)
$$(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)$$ (раскрыть скобки)
$$\frac{a^3-8}{a^2+2a+4}$$ (раскрыть скобки)
$$\frac{\left(\frac{2a}{2a+b}-\frac{4a^2}{4a^2+4ab+b^2}\right)}{\left(\frac{2a}{4a^2-b^2}+\frac{1}{b-2a}\right)}+\frac{8a^2}{2a+b}$$ (упростить выражение)
$$\frac{1-\sin ^4\left(x\right)-\cos ^4\left(x\right)}{2\sin ^4\left(x\right)}+1$$ (упростить выражение)
$$\left(\sqrt{a}-\frac{a}{\sqrt{a}+1}\right)\cdot \frac{a-1}{\sqrt{a}}$$ (упростить выражение)
Решение уравнений и неравенств
Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x, y, z.
Примеры решений уравнений и неравенств:
$$\frac{5}{12}+\frac{x}{6}=\frac{x}{4}+\frac{1}{3}$$ (решить уравнение)
$$x^2+12x+36=0$$ (решить уравнение)
$$\left(x+8\right)^2=x^2+8$$ (решить уравнение)
$$\left(x^2+\frac{1}{x^2}\right)+\left(x+\frac{1}{x}\right)=4$$ (решить уравнение)
$$\frac{19-x^2-4x}{49-x^2}(решить неравенство)
$$\frac{x}{3}+\frac{2x-1}{5}>2x-\frac{1}{15}$$ (решить неравенство)
$$\frac{\left(x-1\right)^2\left(x+7\right)\left(x+3\right)^3}{x^2+6x+9}\ge 0$$ (решить неравенство)
Глава 1. КВАДРАТНЫЕ КОРНИ И ИРРАЦИОНАЛЬНЫЕ ВЫРАЖЕНИЯ
1.11.21.31.41.51.61.71.81.91.101.111.121.13
2.12.22.32.42.52.62.72.82.92.102.112.122.132.142.152.162.172.182.192.202.212.222.23
§ 3. Свойства арифметического квадратного корня
3.13.23.33.43.53.63.73.83.93.103.113.123.133.143.153.163.173.18
3.193.203.213.223.233.243.253.263.273.283.293.303.313.323.333.343.353.363.373.383.393.40
§ 4. Преобразование выражений, содержащих квадратные корни
4.14.24.34.44.54.64.74.84.94.104.114.124.134.144.154.164.174.184.194.204.214.224.234.244.254.264.274.284.294.304.314.324.334.344.354.364.374.38
4.394.40
Вычисление выражений с логарифмами
В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$\log_a \left(b\right) = \frac{\log \left(b\right)}{\log \left(a\right)}$$ Например, $$\log_{3} \left(5x-1\right) = \frac{\log \left(5x-1\right)}{\log \left(3\right)}$$
Примеры решений выражений с логарифмами:
$$\log _3\left(5x-1\right)=2$$ преобразуем в $$\frac{\log \left(5x-1\right)}{\log \left(3\right)}=2$$ (решить уравнение)
$$\log _2\left(x\right)=2\log _x\left(2\right)-1$$ преобразуем в $$\frac{\log \left(x\right)}{\log \left(2\right)}=2\cdot \frac{\log \left(2\right)}{\log \left(x\right)}-1$$ (найти x в уравнении)
Глава 2. КВАДРАТНЫЕ УРАВНЕНИЯ
§ 6. Квадратное уравнение. Виды квадратных уравнений
Упражнение
6.16.26.36.46.56.66.76.86.96.106.116.126.136.146.156.166.176.186.196.206.216.226.236.246.256.266.276.286.296.306.316.32
§ 7. Решение квадратных уравнений
Упражнение
7.17.27.37.47.57.67.77.87.9
7.107.117.127.137.147.157.167.177.187.197.207.217.227.237.247.257.267.277.287.297.307.317.327.337.347.357.367.377.387.397.407.41
§ 8. Теорема Виета
Упражнение
8.18.28.38.48.58.68.78.88.98.108.118.128.138.148.158.168.178.188.198.208.218.228.238.248.258.278.288.29
8.308.318.328.338.348.358.368.378.388.398.408.418.428.438.448.458.478.48
§ 9. Квадратный трехчлен
Упражнение
9.19.29.39.49.59.69.79.89.99.109.119.129.139.149.159.169.179.189.199.209.219.229.239.249.259.269.279.289.299.309.319.329.339.349.359.369.379.389.399.40
§ 10. Дробно-рациональные уравнения
Упражнение
10.110.2
10.310.410.510.610.710.810.910.1010.1110.1210.1310.1410.1510.1610.1710.1810.1910.2010.2110.2210.2310.2410.2510.2610.2710.2810.2910.3010.3110.3210.3310.3410.3510.3610.3710.3810.3910.4010.4110.4210.4310.4410.4510.4610.4710.48
§11. Уравнения, приводящиеся к квадратным уравнениям
Упражнение
11.111.211.311.411.511.611.711.811.911.1011.1111.1211.1311.14
11.1511.1611.1711.1811.1911.2011.2111.2211.2311.2411.2511.2611.2711.2811.2911.3011.3111.3211.3311.3411.3511.3611.3711.3811.3911.4011.4111.42
Упражнение
12.112.212.312.412.512.612.712.812.912.1012.1112.1212.1312.1412.1512.1612.1712.1812.1912.2012.2112.2212.2312.2412.2512.2612.2712.2812.2912.3012.3212.33
12.3412.35
Решение систем уравнений и неравенств
Системы уравнений и неравенств также решаются с помощью онлайн калькулятора. Чтобы задать систему необходимо ввести уравнения/неравенства, разделяя их точкой с запятой с помощью кнопки ;.
Примеры вычислений систем уравнений и неравенств:
$$\begin{cases}x^2-y^2=3 \\ x^4-y^4=15 \end{cases}$$ (решить систему уравнений)
$$\begin{cases}2x+y+(x-2y)^2=3 \\ x^2-4xy+4y^2=9-3(2x+y) \end{cases}$$ (решить систему уравнений)
$$\begin{cases}x+y=3 \\ y+z=8 \\ x+2y+3z=23 \end{cases}$$ (решить систему уравнений)
$$\begin{cases}5x-7>3x-15 \\ 25-4x>29+2x \end{cases}$$ (решить систему неравенств)
$$\begin{cases}\frac{x^2-9}{x}\ge 0 \\ 2x-1\ge 0 \end{cases}$$ (решить систему неравенств)
$$\begin{cases}\frac{x^2+4x+4}{x+2}\le 9 \\ 2x+9>1 \end{cases}$$ (решить систему неравенств)
Пояснения к калькулятору
- Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵.
- Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и →.
- ⌫ — удалить в поле ввода символ слева от курсора.
- C — очистить поле ввода.
- При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
- Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½, ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
- Ввод числа в n-ой степени и квадратного корня прозводится кнопками ab и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей →.