Гдз по алгебре 8 класс мерзляк, полонский, якир вопрос 4 параграф 7

Гдз по алгебре 8 класс мерзляк, полонский, якир

Упражнения для повторения курса алгебры 8 класс

839. Найдите значение выражения:1) $\frac{3m — n}{m + 2n}$, если m = −4, n = 3;2) $\frac{a^2 — 2a}{4a + 2}$, если a = −0,8.

Решение:

840. При каких значениях переменной имеет смысл выражение:1) 7b − 11;2) $\frac{9}{x}$;3) $\frac{5}{2 — y}$;4) $\frac{m — 3}{7}$;5) $\frac{3 + t}{4 — t}$;6) $\frac{2x}{x — 1} — \frac{3}{x — 6}$;7) $\frac{5}{x^8 + 3}$;8) $\frac{x — 2}{|x| + 7}$;9) $\frac{4}{x^2 — 25}$;10) $\frac{3}{|x| — 5}$;11) $\frac{x}{8 + \frac{4}{x}}$;12) $\frac{5}{6 — \frac{2}{x}}$;13) $\frac{1}{(x — 3)(x — 4)}$;14) $\frac{x + 8}{(x + 8)(x — 3)}$?

Решение:

841. Сократите дробь:1) $\frac{8a^2c^3}{4a^3c^2}$;2) $\frac{25mn^2}{75m^8n}$;3) $\frac{60a^3bc^2d^5}{18a^4b^2c^6d}$;4) $\frac{42x^8y^9}{14x^6y^3}$.

Решение:

842. Представьте частное в виде дроби и сократите полученную дробь:1) $4mn^2p : (28m^2np^6)$;2) $-30x^5y^3 : (36x^4y^8)$;3) $-63xy^9 : (-72xy^7)$.

Решение:

843. Сократите дробь:1) $\frac{3x — 6y}{3x}$;2) $\frac{3a + 9b}{4a + 12b}$;3) $\frac{a^2 — 49}{3a + 21}$;4) $\frac{12x^2 — 4x}{2 — 6x}$;5) $\frac{x^2 — 9}{x^2 + 6x + 9}$;6) $\frac{b^7 + b^4}{b^2 + b^5}$;7) $\frac{a^3 + 64}{3a + 12}$;8) $\frac{xb — 5y + 5b — xy}{x^2 — 25}$;9) $\frac{7m^2 — 7m + 7}{14m^3 + 14}$;10) $\frac{a^2 + bc — b^2 + ac}{ab + c^2 + ac — b^2}$;11) $\frac{20mn^2 — 20m^2n + 5m^3}{10mn — 5m^2}$;12) $\frac{x^2 — yz + xz — y^2}{x^2 + yz — xz — y^2}$.

Решение:

844. Найдите значение выражения:1) $\frac{x^5y^7 — x^3y^9}{x^3y^7}$, если x = −0,2, y = 0,5;2) $\frac{4a^2 — 36}{5a^2 — 30a + 45}$, если a = 2;3) $\frac{(3a + 3b)^2}{3a^2 — 3b^2}$, если $a = \frac{1}{3}, b = -\frac{1}{6}$;4) $\frac{20x^2 — 140xy + 245y^2}{4x — 14y}$, если 2x − 7y = −0,5.

Решение:

Упражнения для повторения курса алгебры 8 класс

839. Найдите значение выражения:1) $\frac{3m — n}{m + 2n}$, если m = −4, n = 3;2) $\frac{a^2 — 2a}{4a + 2}$, если a = −0,8.

Решение:

840. При каких значениях переменной имеет смысл выражение:1) 7b − 11;2) $\frac{9}{x}$;3) $\frac{5}{2 — y}$;4) $\frac{m — 3}{7}$;5) $\frac{3 + t}{4 — t}$;6) $\frac{2x}{x — 1} — \frac{3}{x — 6}$;7) $\frac{5}{x^8 + 3}$;8) $\frac{x — 2}{|x| + 7}$;9) $\frac{4}{x^2 — 25}$;10) $\frac{3}{|x| — 5}$;11) $\frac{x}{8 + \frac{4}{x}}$;12) $\frac{5}{6 — \frac{2}{x}}$;13) $\frac{1}{(x — 3)(x — 4)}$;14) $\frac{x + 8}{(x + 8)(x — 3)}$?

Решение:

841. Сократите дробь:1) $\frac{8a^2c^3}{4a^3c^2}$;2) $\frac{25mn^2}{75m^8n}$;3) $\frac{60a^3bc^2d^5}{18a^4b^2c^6d}$;4) $\frac{42x^8y^9}{14x^6y^3}$.

Решение:

842. Представьте частное в виде дроби и сократите полученную дробь:1) $4mn^2p : (28m^2np^6)$;2) $-30x^5y^3 : (36x^4y^8)$;3) $-63xy^9 : (-72xy^7)$.

Решение:

843. Сократите дробь:1) $\frac{3x — 6y}{3x}$;2) $\frac{3a + 9b}{4a + 12b}$;3) $\frac{a^2 — 49}{3a + 21}$;4) $\frac{12x^2 — 4x}{2 — 6x}$;5) $\frac{x^2 — 9}{x^2 + 6x + 9}$;6) $\frac{b^7 + b^4}{b^2 + b^5}$;7) $\frac{a^3 + 64}{3a + 12}$;8) $\frac{xb — 5y + 5b — xy}{x^2 — 25}$;9) $\frac{7m^2 — 7m + 7}{14m^3 + 14}$;10) $\frac{a^2 + bc — b^2 + ac}{ab + c^2 + ac — b^2}$;11) $\frac{20mn^2 — 20m^2n + 5m^3}{10mn — 5m^2}$;12) $\frac{x^2 — yz + xz — y^2}{x^2 + yz — xz — y^2}$.

Решение:

844. Найдите значение выражения:1) $\frac{x^5y^7 — x^3y^9}{x^3y^7}$, если x = −0,2, y = 0,5;2) $\frac{4a^2 — 36}{5a^2 — 30a + 45}$, если a = 2;3) $\frac{(3a + 3b)^2}{3a^2 — 3b^2}$, если $a = \frac{1}{3}, b = -\frac{1}{6}$;4) $\frac{20x^2 — 140xy + 245y^2}{4x — 14y}$, если 2x − 7y = −0,5.

Решение:

ГЛАВА 3. Квадратные уравнения

§19. Квадратные уравнения. Решение неполных квадратных уравнений

Вопросы

1. Какое уравнение называют линейным?

Ответ:

2. Какое уравнение называют уравнением первой степени?

Ответ:

3. Приведите пример линейного уравнения, являющегося уравнением первой степени, и пример линейного уравнения, которое не является уравнением первой степени.

Ответ:

4. Какое уравнение называют квадратным?

Ответ:

5. Как называют коэффициенты квадратного уравнения $ax^2 + bx + c = 0$?

Ответ:

6. Какое квадратное уравнение называют приведенным?

Ответ:

7. Какое квадратное уравнение называют неполным?

Ответ:

8. Какие существуют виды неполных квадратных уравнений? Какие корни имеет уравнение каждого вида?

Ответ:

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: