Альдегиды и кетоны. формула, получение, применение

Тема №23 «характерные химические свойства: альдегидов, кетонов и предельных карбоновых кислот»

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными, с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов CnH2n+1OH или CnH2n+2O. Общая формула предельных многоатомных спиртов CnH2n+2Ox , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов CnH2n-6O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы. Например,  это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам,  кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу CnH2n-6O.

Химические свойства карбоновых кислот

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атома­ми водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водо­рода и анионов кислотного остатка:

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их — слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объяс­няется диссоциацией на катионы водорода и анио­ны кислотных остатков.

Очевидно, что присутствием в молекулах кар­боновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие ха­рактерные свойства.

2. Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водо­рода:

Так, железо восстанавливает водород из уксус­ной кислоты:

3. Взаимодействие с основными оксидами с об­разованием соли и воды:

4. Взаимодействие с гидроксидами металловс образованием соли и воды (реакция нейтрализации):

5. Взаимодействие с солями более слабых кис­лот с образованием последних. Так, уксусная кис­лота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

6. Взаимодействие карбоновых кислот со спир­тами с образованием сложных эфиров — реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спирта­ми катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при уда­лении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимо­действие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кис­лотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например, глице­рин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в моле­кулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остат­ка.

7. Реакции присоединения по кратной связи— в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода — ги­дрирование. Для кислоты, содержащей в радикале одну л-связь, можно записать уравнение в общем виде:

Так, при гидрировании олеиновой кислоты об­разуется предельная стеариновая кислота:

Непредельные карбоновые кислоты, как и дру­гие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акрило­вая кислота обесцвечивает бромную воду:

8. Реакции замещения (с галогенами)— в них способны вступать предельные карбоновые кисло­ты. Например, при взаимодействии уксусной кис­лоты с хлором могут быть получены различные хлорпроизводные кислоты:

Химические свойства

Химические свойства альдегидов и кетонов определяются в первую очередь группой , благодаря которой эти вещества химически активны. При этом альдегиды отличаются большей реакционной способностью, чем кетоны.

1. Присоединение к карбонилу по месту двойной связи

Синильная кислота присоединяются по нуклеофильному механизму:

Аналогично протекают реакции присоединения солей и спиртов.

При восстановлении (гидрировании) присоединение водорода идет на катализаторе:

2. Окисление

К действию окислителей альдегиды и кетоны относятся различно. Альдегиды охотно вступают в реакцию и в мягких условиях благодаря наличию водорода при карбонильной группе, которая окисляется до карбоксильной. Продукт реакции – кислота:

Альдегиды дают качественные реакции при окислении свежеприготовленным гидроксидом меди или реактивом Толленса (оксид серебра в аммиачном растворе):

Кетоны ведут себя подобно третичным спиртам и не реагируют со слабыми окислителями. Под действием сильных окислителей происходит распад молекулы кетона.

Карбонильные соединения горят с выделением тепла по схеме:

3. Реакции в алкильном радикале

Карбонил оказывает влияние на реакционную активность углеводородного остатка, сообщая особую подвижность водородным атомам, стоящим при α-расположенном (соседнем с группой ) углероде. Этот водород легко подвергается замещению, например, галогеном:

Aldehydes vs Ketones

Aldehydes are known as organic compounds or acids composed of a double carbon and oxygen bond with two aryl groups or alkyl groups around the two bonds of carbonyl carbon atom. Ketones are organic compounds with a double bond of carbon and oxygen (C=O). The dipole of carbonyl carbon has two methyl groups attached to it in ketones.

An aldehyde is a molecular compound containing a functional group of the formula CHO, consisting of a carbonyl centre linked to an H and any basic alkyl or chain length R group. An aldehyde or formyl group is the functional group altogether.

A ketone (/kiton/) is a compound that contains biochemistry having the formula R2C=O, wherein R can be any carbon-containing ligand. Carbonyl groups are found in ketone molecules.

Acetone (R = R’ = dimethyl) is from the most basic ketones, with the formula CH3C(O)CH3. Ketones have an important role in biological chemistry as well as in the industry.

Examples are numerous sugars (ketoses), many hormones (e.g. testosterone), and the solvents acetone.

Строение альдегидов и кетонов

Определяющий элемент структуры производных углеводородов – функциональная группа атомов. Она служит критерием для отнесения соединения к тому или иному классу органических веществ.

Карбонильная группа

Группа называется карбонилом. Она образована посредством двойной связи, поскольку оба входящих в ее состав атома – углерод и кислород – sp2-гибридизованы.

В карбонильной группе атом углерода затрачивает на -связь одну из трех валентностей, образованных гибридными sp2-облаками, и на -связь – валентность, создаваемую единственным негибридным 2p-облаком. Кислородный атом вступает в -связь с углеродом, затрачивая единственную свободную гибридную орбиталь, и в -связь – через 2p-орбиталь аналогично углероду. Два оставшихся гибридных облака кислорода содержат неподеленные электронные пары и не создают свободных валентностей.

Благодаря высокой электроотрицательности кислород оттягивает в свою сторону электронную плотность по обоим компонентам двойной связи, и она оказывается сильно поляризованной. За счет -электронов, обладающих большой подвижностью и легко смещающихся к кислороду, дипольный момент связи C=O почти вчетверо выше, чем у одинарной связи С-O, характерной для спиртов.

На диполе C=O кислород обладает частичным отрицательным, а углерод – положительным зарядом. Это приводит к поляризации связей С-O у соседнего с карбонилом углеродного атома (отрицательный индуктивный, или I-эффект) и оказывает влияние на химические свойства.

Общая структура молекул альдегидов и кетонов

Состав карбонильных соединений описывается общей формулой . Различия между альдегидами и кетонами состоят в разном строении углеводородных остатков.

В альдегидах одна из свободных валентностей углерода группы присоединяет алкильный радикал, а вторая – атом водорода. В кетонах обе валентности связывают карбонил с алкильными остатками. Общее строение молекул соединений обоих классов имеет следующий вид:

ОКСОСОЕДИНЕНИЯ: АЛЬДЕГИДЫ И КЕТОНЫ

Физические свойства альдегидов и кетонов

Альдегиды и кетоны – жидкости с характерным запахом.
Молекулы альдегидов и кетонов не образуют ассоциатов, поэтому по сравнению со спиртами они имеют более низкие температуры плавления и кипения.

Способы получения альдегидов и кетонов
1. Окисление спиртов
При мягком окислении (дегидрировании) первичных и вторичных спиртов образуются соответственно альдегиды и кетоны (см. » Химические свойства спиртов»).

2. Ацилирование ароматических углеводородов
При ацилировании ароматических углеводородов (реакция Фриделя-Крафтса) образуются ароматические кетоны (см. » Химические свойства аренов»).

3. Гидратация алкинов
При присоединении воды к тройной связи образуются альдегиды и кетоны (см. » Химические свойства алкинов»).

4. Оксосинтез – промышленный способ

5. Окисление метильных производных бензола

6.Гидролиз геминальных дигалогенопроизводных

7. Восстановление хлорангидридов кислот

Химические свойства альдегидов и кетонов
Химия альдегидов и кетонов очень разнообразна. Из них можно получить соединения многих других классов.

1. Реакции нуклеофильного присоединения к карбонильной группе (AN)
Механизм реакции (Большинство таких реакций обратимы)

Фактор, определяющий скорость реакции АN – (+)-заряд на карбонильном атоме углерода.

Влияние заместителей на скорость реакци
Электроноакцепторы увеличивают скорость реакции, электронодоноры её уменьшают
Альдегиды более реакционноспособны, чем кетоны: заместитель R — электронодонор).
Ароматические альдегиды менее реакционноспособны, чем алифатические: +М-эффект арильного заместителя больше, чем +I-эффект алкила.

Влияние пространственных факторов на скорость реакции AN:

Разновидности реакций AN
а) гидратация

б) реакция со спиртами (образование полуацеталей и ацеталей)

Реакция обратима.

Обратная реакция – это кислотный гидролиз ацеталей.
В щелочной среде ацетали не гидролизуются.

в) реакции с тиолами

Тиоацетали трудно гидролизуются кислотами, в щелочи они устойчивы.

г) реакции с N-содержащими нуклеофилами
Механизм «присоединение – отщепление»:

Амины:

Гидразины:

С фенилгидразином и его производными альдегиды и кетоны образуют устойчивые, хорошо кристаллизующиеся вещества, удобные для идентификации исходного соединения. Например:

Гидроксиламин:

Семикарбазид:

д) реакции с синильной кислотой

е) реакции с магнийорганическими соединениями   (реактивами Гриньяра)

2. Реакции с участием  СН-кислотного центра
Галоформные реакции

Эти реакции используются для получения галоформов, а также для качественного определения ацетона и других соединений, содержащих в своей структуре фрагменты СН3-С=О или СН3-СНОН.

Альдольная конденсация

3. Восстановление (гидрирование)

4. Окисление

Альдегиды

Кетоны

5. Реакции диспропорционирования

Реакция Канницарро — реакция идет с альдегидами, не имеющими Н в α-положении

Реакция Тищенко

ХИНОНЫ — ненасыщенные циклические кетоны

Механизм восстановления – одноэлектронный перенос:

Превращения типа «хинон-гидрохинон» участвуют в процессах биологического окисления:

What is Ketone?

The term ketone comes from the ancient German word aketon, which means “acetone.” Ketone designations are created by altering the original alkane’s suffix -ane to -anyone, as per IUPAC nomenclature guidelines.

Although the location of the nucleophile carbonyl functional group is indicated by a number, traditionally non – measurable names for the most prominent ketones, such as acetone as well as benzophenone, are still widely used.

Ketone C-H bonds close to the carbonyl are much more acidic (pKa 20) compared to alkane C-H interactions (pKa 50). This discrepancy is due to the electrophile ion’s resonance stability after dissociation.

The relative ph of the- hydrogen is crucial in the enolization processes of ketones and other oxidation products.

Because of the -hydrogen’s acidity, ketone and other oxidation products can react as catalysts with molar ratio and catalytic bases at that location.

The substituents in ketones are used to classify them. The equivalence of the two organic methyl groups connected to the carbonyl core differentiates ketones into symmetrical and asymmetric derivatives, according to one general categorization.

Acetone (C6H5C(O)C6H5) is a symmetric ketone, as is benzophenone (C6H5C(O)C6H5). Acetophenone is a ketone with an asymmetric structure.

Электронное строение карбонильной группы

Вследствие различной электроотрицательности атомов углерода и кислорода карбонильная группа имеет высокую полярность (μ $\sim$ $2,5 D$ для альдегидов и $2,7 D$ для кетонов) и значительную способность к поляризуемости. Например, значение молекулярной рефракции $MR$ для оксогруппы равна примерно 3,4, тогда как для одинарной $C-O$-связи всего 1,5.

Двойная связь карбонильной группы состоит, как и для алкенов, из σ- и π-связей:

Рисунок 2. Двойная связь карбонильной группы. Автор24 — интернет-биржа студенческих работ

Особенность карбонильной группы заключается в заметной разнице электроотрицательности атомов, ее образующих. Атом кислорода имеет внешнее строение $1s^22s^22p^4$ с распредилением 4х $p$-электронов по отдельным $x,y,z$ подуровням, но окончательно проблема его гибридизации не решена.

Предполагают существование неэквивалентных гибридных орбиталей со значительным $p$-характером типа $s^n p^m$, где $n$ стремиться к 1, $m$ стремиться к 2, то есть, σ-связь $C-O$ вероятнее всего образуется при перекрытии $sp^{2_-}$-гибридной орбитали углерода и $2p_x — AO$ кислорода. $n$-связь образуется при взаимодействии негибридизованои $2p_x — AO$ углерода и $2p_x — AO$ кислорода.

Две остаточные пары $n$-элетронов $2s^2$ и ${2p^2}_y$ атома кислорода существенно на химические свойства карбонильной группы не влияют.

Ниже приведена структура простейшего альдегида — формальдегида с данными валентных углов и длин связей.

Рисунок 3. Структура простейшего альдегида. Автор24 — интернет-биржа студенческих работ

длина связи,
$C=O$ 1,203
$C-H$ 1,101

валентный угол, ${}^\circ$
$H-C=O$ 121,8
$H-C-H$ 116,5

Вследствие полярности связей $C = O$ атом углерода приобретает положительный эффективного заряда, и его называют электрофильным центром, а кислород — отрицательного заряда, и его называют нуклеофильного центром. Поэтому атом углерода взаимодействует с нуклеофилами, что является основным взаимодействием $C=O$-группы альдегидов и кетонов в химических реакциях, а кислород — с электрофилами. Заместители акцепторного действия, которые увеличивают положительный заряд на атоме углерода карбонильной группы, значительно повышают ее реакционную способность. Противоположный эффект наблюдается при донорном действии заместителей:

Рисунок 4. Донорное действие заместителей. Автор24 — интернет-биржа студенческих работ

Итак, альдегиды и кетоны, с одной стороны, проявляют значительные электрофильные свойства, а с другой — слабые нуклеофильные, подобно спиртам и эфирам.

Альдегиды проявляют большую химическую активность по сравнению с кетонами в результате двух основных факторов. Во-первых, при наличии второго углеводородного остатка $R$ возникают стерические препятствия при атаке нуклеофилом электрофильного центра. Во-вторых, заместитель $R$ с $+I$-эффектом уменьшает положительный заряд на электрофильном атоме углерода карбонильной группы и увеличивает отрицательный заряд на атоме кислорода. В результате ослабляется способность карбонильной группы к реакциям с нуклеофильными реагентами.

Энергия связи $C = O$ равна 680-760 кДж / моль (для сравнения энергия двойной связи $E_{C=C}$ составляет 590-640 кДж / моль), но благодаря высокой полярности и поляризуемости карбонильная группа более реакционноспособна, чем углерод-углеродная кратная связь.

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид) НСНО — бесцветный газ с резким запахом и температурой кипения — 2 1 °С, хорошо растворим в воде. Ядовит! Раствор формальдегида в воде (40%) называют формалином и применяют для дезинфекции. В сельском хозяйстве формалин используют для протравливания семян, в кожевенной промышленности — для обработки кож. Формальдегид необходим для получения уротропина — лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применяют в качестве горючего (сухой спирт). Большое количество формальдегида расходуется при получении фенолоформальдегидных смол и некоторых других веществ (см. рис. 44).

Уксусный альдегид (этаналь) СН3СНО — жидкость с резким, неприятным запахом и температурой кипения 21 °С, хорошо растворим в воде. Ядовит! Из уксусного альдегида в промышленных масштабах получают уксусную кислоту и ряд других веществ, он используется для производства различных пластмасс.

1. Сколько атомов углерода содержится в молекулах простейшего альдегида, простейшего кетона? Назовите эти вещества. Приведите синонимы их названий.

2. Назовите вещества, структурные формулы которых:

3. Составьте структурные формулы изомеров состава С4Н8O, содержащих карбонильную группу. К каким классам относятся эти вещества? Назовите их. Составьте уравнения реакций гидрирования этих соединений и укажите названия продуктов реакций.

4. Какой объём формальдегида (н. у.) необходимо подвергнуть гидрированию для получения 16 г метилового спирта?
Ответ: 11,2 л НСНО.

5. Составьте уравнение реакции гидрирования диметилкетона (ацетона). Какова молярная масса продукта реакции?

6. В ходе реакции «серебряного зеркала» образовалась карбоновая кислота, имеющая относительную молекулярную массу, равную 88. Какие органические вещества могли быть реагентами в этой реакции? Используя структурные формулы, составьте возможные уравнения этой реакции.

7. Какая масса ацетальдегида необходима для восстановления 0,54 г серебра из его оксида? Какое количество вещества гидроксида калия необходимо для нейтрализации образующейся при этом уксусной кислоты?
Ответ: 0,11 г СН3СНО, 2,5 • 10-3 моль КОН.

8. В одном из сосудов находится раствор ацетона, в другом — ацетальдегида. Предложите способы определения содержимого каждого сосуда.

9. При сгорании 4,5 г органического вещества образовалось 3,36 л (н. у.) углекислого газа и 2,7 мл воды. Определите молекулярную и структурную формулы вещества, если его плотность по воздуху равна 1,035. Объясните этимологию названий этого вещества. Каковы области его применения?

10. Составьте уравнения реакций, протекающих при бромировании пропаналя на свету. Какие продукты образуются при этом? Назовите их.

11. При окислении гидроксидом меди (II) 11,6 г кислородсодержащего органического соединения образовалось 14,8 г одноосновной карбоновой кислоты, при взаимодействии которой с избытком гидрокарбоната натрия выделилось 4,48 л (н. у.) газа. Определите молекулярную и структурную формулы исходного соединения.

12. При окислении 1,18 г смеси муравьиного и уксусного альдегидов избытком аммиачного раствора оксида серебра образовалось 8,64 г осадка. Определите массовые доли альдегидов в смеси.
Ответ: 25,4% НСНО, 74,6% СН3СНО.

13. Выберите верные утверждения. Уксусный альдегид реагирует с:

1) гидроксидом меди (II);
2) оксидом меди (II);
3) этиленом;
4) водородом;
5) хлороводородом;
6) аммиачным раствором оксида серебра.

Напишите уравнения возможных реакций.

14. Используя метод электронного баланса, составьте уравнение реакции:

Определите окислитель и восстановитель.

15. Выполните учебно-исследовательский проект на тему: «Ароматные молекулы: альдегиды и кетоны в природе и в жизни человека».

Строение карбоновых кислот

Вещества, содержащие в молекуле одну или не­сколько карбоксильных групп, называются карбо­новыми кислотами.

Группа атомов —

— называется карбоксиль­ной группой, или карбоксилом.

Органические кислоты, содержащие в молеку­ле одну карбоксильную группу, являются одноос­новными.

Общая формула этих кислот RCOOH, например:

Карбоновые кислоты, содержащие две кар­боксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтар­ная кислоты:

Существуют и многоосновные карбоновые кис­лоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного ра­дикала карбоновые кислоты делятся на предель­ные, непредельные, ароматические.

Предельными, или насыщенными, карбоновы­ми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат π-связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, не­предельным углеводородным радикалом, например, в молекулах акриловой (пропеновой)

What is Aldehyde?

The aldehyde is an important biochemical and industrial functional group that consists of a carbon atom connected to a hydrogen atom and then double-bonded to an oxygen atom (chemical formula O=CH-).

Alcohol that has been dehydrogenated appears to be the source of the term aldehyde. Aldehydes were once termed by the alcohols they were related to, such as vinous aldehyde for acetaldehyde.

(Vinous comes from the Latin vinum, which means wine, which contributes to the onset of ethanol) The aldehyde family is polar. Because oxygen is less electropositive than carbon, it attracts the electrons inside the carbon-oxygen bond.

It joins with a hydrogen atom on the opposite end. Formaldehyde is considered the most basic kind of aldehyde.

The fact that formaldehyde deviates from the conventional equation by possessing a hydrogen atom rather than the R group is what makes it so popular.

The carbonyl group is connected to two H atoms in formaldehyde, the most fundamental aldehyde. The carbocation is linked to one hydrogen but another carbon group in many other aldehydes.

The carbocation of an aldehyde is expressed as CHO in the dimension of sustainability formulae. The equation for formaldehyde is HCHO, while the equation for acetaldehyde is CH3CHO.

Физические свойства альдегидов и кетонов

У соединений этого класса атомы не могут формировать водородные связи. Эта особенность отражается в низких температурах плавления и кипения, по сравнению со спиртами. У кетонов температура плавления и кипения немного выше, чем у альдегидов.

Существование в виде характерно только для формальдегида. Альдегиды с двумя-пятью и кетоны с тремя-четырьмя углеродными атомами – жидкости. Агрегатное состояние высших соединений – твердое. Низшие карбонильные молекулы растворимы в воде, а по мере увеличения углеродной цепи эта способность падает. Все альдегиды и кетоны хорошо растворимы в органических растворителях.

Особенность представителей класса заключается в особенных ароматах. Низшие альдегиды и кетоны отличаются резким запахом, средние имеют неприятный запах, а высшие обладают цветочными ароматами. Альдегиды опасны при вдыхании, т.к. поражают слизистые, а также оказывают негативное влияние на нервную систему.

Формальдегид – опасный для здоровья бесцветный газ. Его можно отличить по резкому запаху. Формальдегид относится к группе веществ раздражающего или слезоточивого действия. Водный раствор 40-% формальдегида – формалин, который обладает дезинфицирующим эффектом и используется для хранения биологических объектов.

Ацетальдегид – бесцветная жидкость с низкой температурой кипения в 21˚С. Обладает запахом зеленой листвы. Негативно влияет на организм человека и животных.

Некоторые альдегиды люди используют как источник витаминов. Например, в пиродоксале содержится витамин В6.

Некоторые насекомые в качестве защиты используют сильные запахи, в состав которых входят альдегиды. Эти соединения оказывают раздражающее действие.

Физические свойства карбоновых кислот

Низшие кислоты, т. е. кислоты с относитель­но небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, — жидко­сти с характерным резким запахом (например, за­пах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, — вязкие маслянистые жид­кости с неприятным запахом; содержащие более 9 атомов углерода в молекуле — твердые вещества, которые не растворяются в воде. Температуры ки­пения предельных одноосновных карбоновых кис­лот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относитель­ной молекулярной массы. Так, температура кипе­ния муравьиной кислоты равна 100,8 °С, уксус­ной — 118 °С, пропионовой — 141 °С.

Простейшая карбоновая кислота — муравьиная НСООН, имея небольшую относительную молеку­лярную массу (Мr(НСООН) = 46), при обычных уcловиях является жидкостью с температурой кипе­ния 100,8 °С. В то же время бутан (Mr(C4H10) = 58) в тех же условиях газообразен и имеет температу­ру кипения -0,5 °С. Это несоответствие темпера­тур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями:

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоно­вых кислот содержат полярную группу атомов — карбоксил

— и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличени­ем числа атомов в углеводородном радикале рас­творимость карбоновых кислот снижается.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH2, называют первичными аминами.

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами. Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

СH3-NH-CH3 СH3-NH-CH2-CH3
диметиламин метилэтиламин

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами. В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид CnH2n+3N.

Ароматические амины с только одним  непредельным заместителем имеют общую формулу CnH2n-5N

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: