Биогенные элементы
Часть земной оболочки, занятая растительными и животными организмами образует биосферу. В процессе деятельности живых организмов в биосфере образуются минералы и различные природные вещества. Для полноценного функционирования биосферы и поддержания непрерывности ее процессов, внутри нее должны постоянно осуществляться обмены биогенных веществ, все элементы которых важны для жизни как таковой. В организмы живых существ входят те же составляющие, что и в воздух, воду, почву и минералы. Известно около 90 химических элементов в составе земной коры. В составе живых организмов обнаружено около 70 химических элементов периодической системы. Отличие только в том, что молекулы неживой природы просты и однотипны, а живые организмы состоят из множества атомов разных типов. Химические элементы, находящиеся в живом организме и обладающие выраженной биологической ролью – называются биогенными элементами.
Важнейшие биогенные элементы — кислород (составляет ок. 70% массы организмов), углерод (18%), водород (10%), азот, кальций, калий, фосфор, магний, сера, хлор, натрий.
🎬 Видео
Как ЛЕГКО понять Химию с нуля — Массовая доля вещества // ХимияСкачать
Приготовление раствора с заданной концентрациейСкачать
Способы выражения концентрации растворов. Практическая часть. 8 класс.Скачать
Способы выражения концентрацииСкачать
Математика Задачи на концентрацию и растворыСкачать
ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный ОбъемСкачать
Решение задач на концентрации растворовСкачать
Способы выражения концентрации растворов. Практическая часть. 8 класс.Скачать
Задачи на концентрациюСкачать
Способы выражения концентрации растворов. Практическая часть. 8 класс.Скачать
Задача на приготовление растворов методом «КРЕСТА». Включает См и массовую долю р-ров.Скачать
ХИМИЯ С НУЛЯ — Как решать задачи по Химии на Массовую ДолюСкачать
Способы выражения концентрации растворов. Практическая часть. 8 класс.Скачать
Как найти молярную и нормальную концентрациюСкачать
Влияние человека
Человек, как существо биологическое, непосредственно втянут в круговорот веществ. Однако ему все труднее соблюдать баланс и кодекс невмешательства в основные природные процессы. Бесконтрольно потребляя ресурсы планеты, заполняя неперерабатываемыми отходами ее атмосферу и биосферу, человек неблагоприятно влияет на естественный круговорот. Таким образом он наносит вред себе в первую очередь. Так, излишки азотных удобрений, которыми люди щедро посыпают почвы, впитываются в глубокие слои почвы и смываются дождями с полей, попадая в воду. Так или иначе, нитраты попадают в организм человека через пищу и воду, вызывая рак и другие сбои в процессах жизнедеятельности.Необходимо помнить, что все на Земле взаимосвязано. Для гармоничной и продолжительной жизни нужно поддерживать баланс веществ в природе, учитывая особенности естественного круговорота.Для лучшего восприятия всей изложенной информации смотрите тематическое видео.
Разнообразие форм и свойств
Природа вещества нас окружает разнообразием форм и свойств. Все вещества имеют свою уникальную структуру, что определяет их особенности и свойства.
Одно из основных свойств вещества – его состояние: твердое, жидкое или газообразное. Состояние вещества зависит от сил притяжения и движения его молекул. Например, в твердом состоянии молекулы вещества находятся на определенном расстоянии друг от друга и имеют регулярный порядок. В жидком состоянии молекулы уже более свободны и движутся посредине между другими молекулами. В газообразном состоянии молекулы вещества движутся хаотичным образом и находятся на больших расстояниях друг от друга.
Вещества также могут быть разных цветов, запахов и вкусов. Например, цвета вещества зависят от того, какие частицы поглощают или отражают свет. Вкус и запах вещества определяются сигналами, передаваемыми рецепторам в наших органах чувств.
Важно отметить, что разнообразие форм и свойств вещества позволяет нам использовать их для различных целей. Например, твердые вещества могут использоваться для построения зданий и создания инструментов, жидкости – для увлажнения и гидратации организма, газы – для создания энергии
Как решить задачу на смеси и сплавы: 3 действия
Итак, решение любой задачи на смеси и сплавы сводится к выполнению трех действий:
- Необходимо составить таблицу, в которой указываем общую массу каждого вещества и чистую массу каждого вещества. Эти данные содержатся в условии задачи. Если какие-то данные в условии отсутствуют, то обозначаем их как неизвестные — х, у.
- Составляем систему уравнений, основываясь на том, что при соединении двух смесей (или сплавов) их массы складываются. Т.е. мы складываем как общую массу двух изначальных смесей (или сплавов), так и чистую массу каждого вещества, содержащихся в них. Решаем полученную систему уравнений.
- После решения системы уравнений и нахождения всех неизвестных обязательно возвращаемся к условию задачи и смотрим, что требовалось найти. Многие ученики, решив правильно систему уравнений, неправильно записывают ответ. Ведь решение системы – это еще не ответ к задаче! Вернитесь к условиям задачи, прочитайте, что именно требовалось найти, и запишите ответ.
Физические явления: особенности и примеры
Физические явления – это процессы, которые происходят с веществом, не изменяя его химического состава. Они связаны с изменениями физических свойств вещества, таких как температура, давление, объем и т. д. Физические явления можно наблюдать и измерять с помощью физических методов и приборов.
Основные особенности физических явлений:
- Не изменяют химический состав вещества.
- Происходят при изменении физических условий.
- Обратимы – вещество может вернуться в исходное состояние после окончания явления.
- Могут быть наблюдаемыми и измеряемыми с помощью физических методов.
Примеры физических явлений:
- Изменение агрегатного состояния: плавление, кипение, конденсация, сублимация.
- Изменение объема при изменении давления или температуры.
- Изменение электрической проводимости при изменении температуры.
- Изменение показателя преломления света при прохождении через разные среды.
- Дифракция света.
- Эффекты электромагнитного взаимодействия.
- Магнитные явления: магнитная индукция, магнитное поле.
Физические явления играют важную роль в понимании и изучении природы и являются основой для различных научных и технических приложений.
Кинетическая энергия: связь со скоростью движения
Кинетическая энергия — это энергия движения. Она возникает вследствие перемещения объекта и зависит от его массы и скорости. Чем больше масса объекта и чем быстрее он движется, тем больше его кинетическая энергия.
Связь между кинетической энергией и скоростью движения можно описать с помощью формулы:
Кинетическая энергия (Eк) = 0,5 * масса (m) * скорость (v)2
Из этой формулы видно, что кинетическая энергия пропорциональна квадрату скорости. То есть удвоение скорости приведет к увеличению кинетической энергии в четыре раза.
Чтобы лучше понять связь между кинетической энергией и скоростью движения, можно рассмотреть примеры из повседневной жизни:
- Автомобиль, двигаясь с высокой скоростью, имеет большую кинетическую энергию. Поэтому при столкновении с другим объектом он может причинить больше вреда, чем автомобиль, двигающийся медленнее.
- Мяч, брошенный с большой скоростью, обладает большой кинетической энергией. Это позволяет ему преодолевать сопротивление воздуха и лететь на значительное расстояние.
- Человек, бегущий со значительной скоростью, также обладает большой кинетической энергией. Именно она передается при ударе, например, при выполнении удара ногой или рукой.
Таким образом, кинетическая энергия связана со скоростью движения объекта. Она зависит от массы объекта и его скорости, а выражается через формулу Eк = 0,5 * m * v2.
Теплопроводность: передача энергии без изменения состава вещества
Теплопроводность — это одно из физических явлений, при котором энергия тепла передается от более нагретых участков к менее нагретым без изменения состава вещества. Теплопроводность возникает вследствие движения частиц вещества и основана на их тепловом движении.
Теплопроводность является основным способом передачи тепла в твердых телах, хотя некоторая теплопроводность также наблюдается в жидкостях и газах. Скорость передачи теплоты зависит от свойств вещества, таких как теплопроводность, плотность и теплоемкость.
Теплопроводность в твердых телах
- Между атомами или молекулами вещества существуют силы взаимодействия, которые определяют степень теплопроводности.
- В твердых телах теплопроводность зависит от внутренней структуры материала, его плотности и степени упорядоченности.
- Металлы обладают высокой теплопроводностью из-за свободных электронов, которые эффективно перемещают тепло.
- В неметаллических твердых телах теплопроводность обусловлена преимущественно фононами — колебаниями кристаллической решетки.
Примеры теплопроводности
- При касании металлического предмета, например, ключа, рука быстро ощущает его холод. Это происходит из-за теплопроводности материала.
- При нагревании сковороды на плите нагрев распространяется по всей поверхности сковороды, что позволяет равномерно жарить пищу.
- Теплопроводность волос используется при пользовании плойкой для укладки волос.
Теплопроводность играет важную роль во многих аспектах нашей жизни, от технологии до ежедневных применений. Понимание этого физического явления позволяет создавать эффективные системы теплопередачи и оптимизировать процессы, связанные с теплом.
Природа вещества: значение и влияние на жизнь
Понимание природы вещества имеет огромное значение для нашей жизни. Знание о составе и свойствах различных веществ позволяет нам изучать их поведение, создавать новые материалы и разрабатывать новые технологии.
Природа вещества также оказывает огромное влияние на нашу физическую и химическую окружающую среду. Изменение состояния вещества, например, при плавлении или испарении, может привести к изменению климата и созданию новых условий для жизни организмов.
Мы также зависим от определенных веществ для обеспечения нашего здоровья и жизнедеятельности. Вода, кислород, пища — все это основные вещества, которые необходимы для нашего выживания.
Кроме того, природа вещества оказывает влияние на наши ежедневные решения и повседневную жизнь. Мы выбираем материалы для строительства, одежду для защиты и пищу для питания, и все это опирается на знание о свойствах веществ и их взаимодействии.
Таким образом, природа вещества играет фундаментальную роль в нашей жизни. Понимание ее значения и влияния помогает нам лучше понимать мир вокруг нас и делать более информированные решения.
Главные функции
Всему живому на планете отведена важная роль — быть главным связующим звеном в биосфере, обеспечивая её целостность. Выполняя различные биогеохимические функции, оно обеспечивает круговорот веществ в природе и превращение энергии.
- Концентрационная. Обеспечивает биогенную миграцию атомов в организмы. Когда живое существо умирает, атомы переходят в неживую природу.
- Рассеивающая. Проявляется в распределении вещества во время передвижения и питания живого. Примером может стать рассеивание железа гемоглобина крови через комара или пиявку.
- Газовая. Заключается в обеспечении непрерывного газообмена между живым и средой вокруг, за счет которого газовый состав атмосферы поддерживается на определённом уровне.
- Энергетическая. Характеризуется способностью живого сосредотачивать в себе солнечную энергию и передавать через пищевые цепи. Химические превращения веществ и энергии являются основой существования организмов.
- Окислительно-восстановительная. Выражается в обмене веществ и энергии с внешней средой, связана с химическими превращениями веществ. Данные реакции лежат в основе метаболизма.
- Деструктивная. Смысл данной функции заключается в разложении остатков органического вещества и разрушении костных веществ, и вовлечении их в круговорот. Выполняют эту задачу главным образом разрушители органики (бактерии и грибы).
- Транспортная. Заключается в перемещении энергии и веществ во время движения организмов. Такой перенос может осуществляться на огромные расстояния, например, перелетными птицами.
- Информационная. Выражается в накоплении, сохранении и дальнейшей передаче следующим поколениям определенной информации.
- Средообразующая. Характеризуется способностью организмов самостоятельно формировать для себя среды жизни. Для её реализации одновременно должны выполняться другие функции.
Мне нравитсяНе нравится
Химическая связь, строение и свойства вещества
Взаимодействия, результатом которых становится объединение химических частиц в вещества, принято делить на химические и межмолекулярные связи. Первая группа, в свою очередь, подразделяется на ионную, ковалентную и металлическую связи.
Ионная связь представляет собой связь разноименно заряженных ионов. Такая связь возникает за счет электростатического притяжения. Для того чтобы ионная связь образовалась, ионы должны быть разного размера. Это обусловлено тем, что ионы определенного размера склонны отдавать электроны, а другие – принимать их.
Ковалентная связь возникает за счет образования общей пары электронов. Для ее возникновения необходимо, чтобы радиус атомов был одинаковым или схожим.
Металлическая связь возникает за счет обобществления валентных электронов. Она образуется в случае, если размер атомов большой. Такие атомы обычно отдают электроны.
По типу строения все вещества можно разделить на молекулярные и немолекулярные. Большинство органических веществ относится к первому типу. По типу химической связи различают вещества с ковалентными, ионными и металлическими связями.
Физические явления. Физические свойства веществ.
Явления, при которых вещества изменяют агрегатное состояние, но при этом не превращаются в другие вещества, называют физическими. Каждое индивидуальное вещество обладает определенными свойствами. Свойства веществ могут быть различными или сходными друг с другом. Каждое вещество описывают при помощи набора физических и химических свойств. Рассмотрим в качестве примера воду. Вода замерзает и превращается в лед при температуре 0°С, а закипает и превращается в пар при температуре +100°С. Данные явления относятся к физическим, так как вода не превратилась в другие вещества, происходит только изменение агрегатного состояния. Данные температуры замерзания и кипения – это физические свойства, характерные именно для воды.
Свойства веществ, которые определяют измерениями или визуально при отсутствии превращения одних веществ в другие, называют физическими
Испарение спирта, как и испарение воды – физические явления, вещества при этом изменяют агрегатное состояние. После проведения опыта можно убедиться, что спирт испаряется быстрее, чем вода – это физические свойства этих веществ.
К основным физическим свойствам веществ можно отнести следующие: агрегатное состояние, цвет, запах, растворимость в воде, плотность, температура кипения, температура плавления, теплопроводность, электропроводность. Такие физические свойства как цвет, запах, вкус, форма кристаллов, можно определить визуально, с помощью органов чувств, а плотность, электропроводность, температуру плавления и кипения определяют измерением. Сведения о физических свойствах многих веществ собраны в специальной литературе, например, в справочниках. Физические свойства вещества зависят от его агрегатного состояния. Например, плотность льда, воды и водяного пара различна.
Газообразный кислород бесцветный, а жидкий – голубой Знание физических свойств помогает «узнавать» немало веществ. Например, медь – единственный металл красного цвета. Соленый вкус имеет только поваренная соль. Иод – почти черное твердое вещество, которое при нагревании превращается в фиолетовый пар. В большинстве случаев для определения вещества нужно рассматривать несколько его свойств. В качестве примера охарактеризуем физические свойства воды:
- цвет – бесцветная (в небольшом объеме)
- запах – без запаха
- агрегатное состояние – при обычных условиях жидкость
- плотность – 1 г/мл,
- температура кипения – +100°С
- температура плавления – 0°С
- теплопроводность – низкая
- электропроводность – чистая вода электричество не проводит
Биогенные элементы
Для благоприятного функционирования всей биосферы и непрерывности ее процессов, внутри нее должны постоянно осуществляться обмены биогенных веществ, все элементы которых важны для жизни как таковой. В организмы живых существ входят те же составляющие, что и в воздух, воду, почву и минералы. Отличие только в том, что молекулы неживой природы просты и однотипны, а живые организмы состоят из множества атомов разных типов.
Рис. 1. Классификация биогенных элементовК биогенным относятся все элементы из таблицы Менделеева, но особенно важны следующие:
- водород
- кислород
- сера
- фосфор
- углерод
- азот
- железо
§ 13. Явления природы. Физические явления
<<< Назад§ 12. Разнообразие веществ | Вперед >>>§ 14. Химические явления. Горение |
Скрыть рекламу в статье
§ 13. Явления природы. Физические явления
Нас окружает бесконечно разнообразный мир веществ и явлений.
В нем непрерывно происходят изменения.
Любые изменения, которые происходят с телами, называют явлениями. Рождение звезд, смена дня и ночи, таяние льда, набухание почек на деревьях, сверкание молнии при грозе и так далее – все это явления природы.
Физические явления
Вспомним, что тела состоят из веществ. Заметим, что при одних явлениях вещества тел не меняются, а при других – меняются. Например, если разорвать листок бумаги пополам, то, несмотря на произошедшие изменения, бумага останется бумагой. Если же бумагу сжечь, то она превратится в пепел и дым.
Явления, при которых могут изменяться размеры, форма тел, состояние веществ, но вещества остаются прежними, не превращаются в другие, называют физическими явлениями (испарение воды, свечение электрической лампочки, звучание струн музыкального инструмента и т. д.).
Физические явления чрезвычайно разнообразны. Среди них различают механические, тепловые, электрические, световые и др.
Давайте вспомним, как плывут по небу облака, летит самолет, едет автомобиль, падает яблоко, катится тележка и т. д. Во всех перечисленных явлениях предметы (тела) движутся. Явления, связанные с изменением положения какого-либо тела по отношению к другим телам, называют механическими (в переводе с греческого «механе» означает машина, орудие).
Многие явления вызываются сменой тепла и холода. При этом происходят изменения свойств самих тел. Они меняют форму, размеры, изменяется состояние этих тел. Например, при нагревании лед превращается в воду, вода – в пар; при понижении температуры пар превращается в воду, вода – в лед. Явления, связанные с нагреванием и охлаждением тел, называют тепловыми (рис. 35).
Рис. 35. Физическое явление: переход вещества из одного состояния в другое. Если заморозить капли воды, вновь возникнет лед
Рассмотрим электрические явления. Слово «электричество» происходит от греческого слова «электрон» – янтарь. Вспомните, что, когда вы быстро снимаете с себя шерстяной свитер, вы слышите легкий треск. Проделав то же в полной темноте, вы увидите еще и искры. Это простейшее электрическое явление.
Чтобы познакомиться еще с одним электрическим явлением, проделайте следующий опыт.
Нарвите маленькие кусочки бумаги, положите их на поверхность стола. Расчешите чистые и сухие волосы пластмассовой расческой и поднесите ее к бумажкам. Что произошло?
Рис. 36. Небольшие кусочки бумаги притягиваются к расческе
Тела, которые способны после натирания притягивать легкие предметы, называют наэлектризованными (рис. 36). Молнии при грозе, полярные сияния, электризация бумаги и синтетических тканей – все это электрические явления. Работа телефона, радио, телевизора, разнообразных бытовых приборов – это примеры использования человеком электрических явлений.
Явления, которые связаны со светом, называют световыми. Свет излучают Солнце, звезды, лампы и некоторые живые существа, например жуки-светлячки. Такие тела называются светящимися.
Мы видим при условии воздействия света на сетчатку глаза. В абсолютной темноте мы видеть не можем. Предметы, которые сами не излучают свет (например, деревья, трава, страницы этой книги и др.), видны только тогда, когда они получают свет от какого-нибудь светящегося тела и отражают его от своей поверхности.
Луна, о которой мы часто говорим как о ночном светиле, в действительности является лишь своеобразным отражателем солнечного света.
Изучая физические явления природы, человек научился использовать их в повседневной жизни, быту.
1. Что называют явлениями природы?
2. Прочитайте текст. Перечислите, какие явления природы называются в нем: «Наступила весна. Солнце греет все сильнее. Тает снег, бегут ручьи. На деревьях набухли почки, прилетели грачи».
3. Какие явления называют физическими?
4. Из перечисленных ниже физических явлений в первый столбик выпишите механические явления; во второй – тепловые; в третий – электрические; в четвертый – световые явления.
Физические явления: вспышка молнии; таяние снега; спуск с горы на санках; плавление металлов; работа электрического звонка; радуга на небе; солнечный зайчик; перемещение камней, песка водой; кипение воды.
<<< Назад§ 12. Разнообразие веществ | Вперед >>>§ 14. Химические явления. Горение |
Решение задач на упаривание растворов
Выпаривание раствора происходит в результате испарения воды, что ведет за собой уменьшение общего объема и массы. В то же время масса растворенного вещества остается без изменений. Существуют случаи, когда, кроме растворителя, испаряется растворенное вещество, если оно обладает повышенной летучестью.
Пример. Водный раствор аммиака
Рассмотрим пример решения задачи на упаривание.
Условие: В наличии 800 г раствора с 15%-ной концентрацией определенного вещества. Нужно увеличить его массовую долю на 5%. Сколько г воды должно испариться?
Этапы решения:
- Какова масса вещества в первичном растворе?
\(M_в=\omega_в\times M_р=0,15×800=120\)г, где \(M_в\) — масса вещества, \(M_р\) — масса раствора
Найденное значение останется постоянным, поскольку при выпаривании изменения массы растворенного вещества не происходит. Значит M’=120г
2. \(M_р=M_в\div\omega_в= 120÷0.2=600\)г
3. Теперь можно найти массу испаренной воды:
\(M{исп\;в}=M_р-M’=800-600=200\)г
Выводы
Растворы — это однородная смесь двух или более компонентов. При образовании растворов в результате сольватации происходит дробление растворяемого вещества до молекул или ионов.
Истинный раствор — это однородная смесь молекул и ионов различных веществ.
Электролиты это вещества, которые в водных растворах распадаются на ионы (диссоциируют). Уравнения реакций для таких веществ составляют с учётом этого процесса в ионно-молекулярной форме. Реакции ионного обмена, в том числе гидролиз, осуществимы, если происходит связывание ионов, т. е. образуется осадок, газ или слабый электролит.