Гдз по алгебре 8 класс макарычев, миндюк номер 857

Решение неравенств с одной переменной

Особенности готовых домашних заданий

ГДЗ – это современное пособие со всеми упражнениями, необходимыми для полного освоения рабочей программы. Не нужно отдельно искать печатное издание. Все можно найти онлайн. Каждое задание располагается под определенным номером, который соответствует реальному обозначению из учебника.

Содержится более пяти разных разделов, которые включают проверочные работы разной уровни сложности. Предоставляется повторение предыдущих тем с целью более глубокого изучения материала. Информация подается в понятном виде, поэтому ученик легко сможет во всем разобраться самостоятельно. Такая методическая рекомендация создавалась специально для того, чтобы повысить успеваемость каждого ребенка, позволяя достичь лучших результатов во время проведения уроков.

Задания для школьных олимпиад

Как часто школьники жалуются на точные науки. Тем более, когда они переходят на седьмую ступень образования, и у них добавляется геометрия, физика. Все это, конечно довольно трудные предметы. Однако они ведь и очень интересные, а также необходимые для жизни. Задуматься только, сколько времени можно было бы сократить, если бы люди помнили формулы, которые помогают высчитать то или иное число быстрым способом. К тому же, реже мошенники могли бы обманывать того, кто плохо разбирается в математике. Ведь все покупки, которые мы делаем, когда считаем процент скидки и кредита,- все это связано с математическими выражениями. Тем более, эти дисциплины благотворно влияют на интеллект человека. Они развивают логическое и пространственное мышление, вычислительные способности, умение доказывать и резюмировать, тренируют память и мозг в целом.

К сожалению, на уроках ребята не всегда внимательно слушают учителя, а ведь это чревато непониманием какой-нибудь объемной и сложной темы. Педагогу итак непросто объяснить что-то такое за 40-45 минут, когда надо не только выдать теорию, но и закрепить ее на практике. Ввиду того, что ученик не понял раздел, он не может сделать домашнее задание. Зачастую решает списать с интернета или у одноклассников, что, конечно, не приводит ни к чему хорошему. Для того чтобы успешно готовиться к урокам, мы советуем использовать онлайн-решебник.Не думайте, что обучающийся будет просто списывать оттуда д/з. в нем опытные и профессиональные методисты подробно разобрали каждое задание. Так же ему стоит доверять, так как его выпустило известное издательство «Просвещение» в 2015 году.

Упражнения:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

Алгебра 8 Мордкович (упр. 37.1 — 37.46)

§ 37. Решение квадратных неравенств.

Задание № 37.1. Постройте график функции у = x2 – 4х + 3. С помощью графика решите неравенство:
а) x2 – 4х + 3 > 0; б) x2 – 4х + 3 ≤ 0; в) x2 – 4х + 3 < 0; г) х2 – 4х + 3 ≥ 0.

Задание № 37.2. Решите неравенство:
а) x2 – 6х – 7 > 0;   б) x2 + 2х – 48 ≤ 0;   в) x2 + 4х + 3 ≥ 0;   г) x2 – 12x – 45 < 0.

Решите неравенство:
Задание № 37.3. 
а) –x2 + 6x – 5 < 0; б) –x2 – 2х + 8 ≥ 0; в) –x2 + 16x – 28 > 0; г) –x2 + 4x – 3 < 0.

Задание № 37.4. а) 2×2 – х – 6 > 0; б) 3×2 – 7x + 4 ≤ 0; в) 2×2 + 3x + 1 < 0; г) 5×2 – 11x + 2 ≥ 0.

Задание № 37.5. а) –5×2 + 4x + 1 > 0; б) –2×2 – 5x + 18 ≤ 0; в) –6×2 + 13x + 5 < 0; г) –3×2 + 5x – 2 ≥ 0.

Задание № 37.6. а) (x – 2)(x + 3) > 0; б) (x + 5)(x + 1) ≤ 0; в) (x + 7)(x – 5) < 0; г) (x – 4)(x – 6) > 0.

Задание № 37.7.

Задание № 37.8.

Задание № 37.9.

Задание № 37.10.

Задание № 37.11.

Задание № 37.12.

Задание № 37.13.

Задание № 37.14.

Задание № 37.15.

Задание № 37.16.

Задание № 37.17.

Задание № 37.18.

Задание № 37.19. Решите неравенство: а) x2 ≥ 25x; б) 0,3×2 < 0,6x; в) x2 ≤ 36x; г) 0,2×2 > 1,8x.

Задание № 37.20. При каких значениях x:
а) трехчлен 2×2 + 5x + 3 принимает положительные значения;
б) трехчлен –x2 – x/3 – 1/36 принимает неотрицательные значения?

Задание № 37.21. а) Сколько целочисленных решений имеет неравенство x2 – 5x – 6 < 0?
б) Сколько целочисленных решений имеет неравенство x2 – 6x ≤ 7?

Задание № 37.22. а) Найдите наименьшее целочисленное решение неравенства x2 + 7x ≤ 30.
б) Найдите наибольшее целочисленное решение неравенства 3x – x2 > –40.

Задание № 37.23.

Задание № 37.24.

Задание № 37.25.

Задание № 37.26.

Задание № 37.27.

Задание № 37.28.

Задание № 37.29.

Задание № 37.30.

Задание № 37.31.

Задание № 37.32.

Задание № 37.33.

Задание № 37.34. а) Сколько целочисленных решений имеет неравенство x2 + 5х – 8 < 0?
б) Сколько целочисленных решений имеет неравенство 15 – x2 + 10х > 0?

Задание № 37.35. а) Найдите наименьшее целочисленное решение неравенства x2 + 10х < –12.
б) Найдите наибольшее целочисленное решение неравенства 3×2 + 5х ≤ 4.

Задание № 37.36. При каких значениях параметра р квадратное уравнение 3×2 – 2рх – р + 6 = 0:
а) имеет два различных корня; б) имеет один корень; в) не имеет корней?

Задание № 37.37. При каких значениях параметра р квадратное уравнение 2×2 – 2рх + р + 12 = 0:
а) имеет два различных корня; б) имеет один корень; в) не имеет корней?

Задание № 37.38. При каких значениях параметра р квадратное уравнение x2 + 6рх + 9 = 0:
а) имеет два различных корня; б) имеет один корень; в) не имеет корней?

Задание № 37.39. Найдите все значения параметра р, при которых не имеет действительных корней уравнение:
а) (р – 1)x2 – 4х + 5 = 0;
б) (р – 15)x2 + 4px – 3 = 0;
в) (2p + 3)x2 – 6х + 8 = 0;
г) (3p – 5)x2 – (6p – 2)х + 3p – 2 = 0.

Задание № 37.40. Найдите все значения параметра р, при которых имеет действительные корни уравнение:
а) x2 – 6х + p2 = 0;   б) x2 – 12px – 3p = 0;   в) x2 – 4х – 2p = 0;   г) x2 + 2px + р + 2 = 0.

Задание № 37.41. Найдите все значения параметра р, при которых имеет действительные корни уравнение:
а) 3px2 – 6px + 13 = 0;
б) (1 – 3p)x2 – 4х – 3 = 0;
в) px2 – 3рх – 2 = 0;
г) (р – 1)x2 – (2p – 3)х + р + 5 = 0.

Задание № 37.42. При каких целочисленных значениях параметра р неравенство (х – 2)(х – р) < 0 имеет три целочисленных решения?

Задание № 37.43. При каких значениях параметра р неравенство x2 ≤ 9р2 имеет одно целочисленное решение?

Задание № 37.44. Длина прямоугольника на 2 см больше его ширины. Чему равна длина прямоугольника, если известно, что его площадь не превосходит 224 см2?

Задание № 37.45. Непараллельные стороны квадрата увеличили на 6 см и 4 см. Чему равна сторона квадрата, если известно, что площадь полученного прямоугольника меньше удвоенной площади квадрата?

Задание № 37.46. Две группы туристов вышли с турбазы по направлениям, которые образуют прямой угол. Первая группа шла со скоростью 4 км/ч, а вторая со скоростью 5 км/ч. Группы поддерживали связь по радио, причем переговариваться можно было на расстоянии не более чем 13 км. Какое время после выхода второй группы могли поддерживать между собой связь туристы, если известно, что вторая группа вышла на маршрут через 2 ч после первой?

Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2021). ГЛАВА 5. НЕРАВЕНСТВА. § 37. Решение квадратных неравенств. ОТВЕТЫ на задачи 37.1 — 37.46. Вернуться в ОГЛАВЛЕНИЕ.

Просмотров: 52 320

Решение неравенств с одной переменной

Неравенство 5x – 11 > 3 при одних значениях переменной х обращается в верное числовое неравенство, а при других нет. Например, если вместо х подставить число 4, то получится верное неравенство 5 • 4 – 11 > 3, а если подставить число 2, то получится неравенство 5 • 2 – 11 > 3, которое не является верным. Говорят, что число 4 является решением неравенства 5x – 11 > 3 или удовлетворяет этому неравенству. Нетрудно проверить, что решениями неравенства являются, например, числа 100, 180, 1000. Числа 2; 0,5; -5 не являются решениями этого неравенства.

Определение. Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство.

Решить неравенство — значит найти все его решения или доказать, что решений нет.

Неравенства, имеющие одни и те же решения, называются равносильными. Неравенства, не имеющие решений, также считают равносильными.

При решении неравенств используются следующие свойства:

1) Если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство.

2) Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство;

если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.

Например, неравенство

18 + 6x > 0                     (1)

равносильно неравенству

бx > -18,                     (2)

а неравенство 6x > -18 равносильно неравенству x > -3.

Указанные свойства неравенств можно доказать, опираясь на свойства числовых неравенств.

Докажем, например, что равносильны неравенства (1) и (2). Пусть некоторое число а является решением неравенства (1), т. е. обращает его в верное числовое неравенство 18 + 6а > 0. Прибавив к обеим частям этого неравенства число -18, получим верное неравенство 18 + 6а – 18 > 0 – 18, т. е. 6а > -18, а это означает, что число а является решением неравенства (2).

Мы показали, что каждое решение неравенства (1) является решением неравенства (2). Аналогично доказывается, что каждое решение неравенства (2) служит решением неравенства (1). Таким образом, неравенства (1) и (2) имеют одни и те же решения, т. е. являются равносильными.

Подобными рассуждениями устанавливается справедливость обоих свойств неравенств в общем виде.

Приведём примеры решения неравенств.

Пример 1. Решим неравенство 16x > 13x + 45.

Перенесём слагаемое 13л: с противоположным знаком в левую часть неравенства:

16x — 13x > 45.

Приведём подобные члены:

3x > 45.

Разделим обе части неравенства на 3:

х > 15.

Множество решений неравенства состоит из всех чисел, больших 15. Это множество представляет собой открытый числовой луч (15; +∞), изображённый на рисунке 42.

Ответ можно записать в виде числового промежутка (15; +∞) или в виде неравенства х > 15, задающего этот промежуток.

Пример 2. Решим неравенство 15х – 23 (х + 1) > 2х + 11.

Раскроем скобки в левой части неравенства:

15x – 23x – 23 > 2х + 11.

Перенесём с противоположными знаками слагаемое 2х из правой части неравенства в левую, а слагаемое -23 из левой части в правую и приведём подобные члены:

15x – 23x – 2х > 11 + 23,-10x > 34.

Разделим обе части на -10, при этом изменим знак неравенства на противоположный:

x

Множество решений данного неравенства представляет собой открытый числовой луч (-∞; -3,4), изображённый на рисунке 43.

Ответ: (-∞;-3,4).

Продолжение >>>

Преимущества ГДЗ к дидактическим материалам по алгебре для 8 класса Жохова

ГДЗ – это альтернатива для тех, у кого есть проблемы в процессе обучения. Не всегда родители могут оказать помощь в выполнении домашнего задания. Справиться помогут только верные ответы. Главное – не злоупотреблять, а пытаться сделать все самому. Среди прочих достоинств:

  • просмотр объяснения всех упражнений;
  • подготовка к каждому занятию;
  • подготовка к тестам и контрольным работам;
  • пособие можно найти онлайн;
  • простое понимание сложных алгебраических задач;
  • повышение успеваемости школьников.

Решебник по алгебре для дидактических материалов за 8 класс (авторы: Жохов В. И., Макарычев Ю. Н., Миндюк Н. Г.) соответствует рабочей программе и ФГОС. Теперь каждый ученик может проверить себя самостоятельно, убедиться в своих силах. Это отличный помощник во время различных срезов и проверочных уроков. Главное – пытаться разобраться в особенностях, вникнуть в тему.

Алгебра 8 Мордкович (упр. 36.1 — 36.37)

§ 36. Решение линейных неравенств.

Задание № 36.1. Является ли решением неравенства 2а + 3 > 7а – 17 значение а, равное: а) 2; б) 6,5; в) –√2; г) √18 ?

Задание № 36.2. Какое из чисел –1, 7, √5, 3/7 является решением неравенства 3х > х + 2?

Задание № 36.3. Найдите любые два решения неравенства 9х + 1 > 7х.

Решите неравенство и изобразите множество его решений на координатной прямой:
Задание № 36.4. 
а) х + 1 > 0; б) х – 3 ≤ 0; в) х + 2,5 < 0; г) х – 7 ≥ 0.

Задание № 36.5. а) 2х ≥ 8; б) 4х < 12; в) 5х > 25; г) 7х ≤ 42.

Задание № 36.6.  а) 11x > –33; б) –8x ≥ 24; в) –6х > –12; г) 13х ≤ –65.

Задание № 36.7. а) 3х + 2 > 0; б) –5х – 1 ≤ 0; в) 4х – 5 < 0; г) –6х + 12 ≥ 0.

Задание № 36.8.  а) 2х + 3 ≥ 7; б) –3х + 4 < 13; в) –5х – 1 > 24; г) –х – 8 ≤ 19.

Задание № 36.9. а) 5(х + 2) ≥ 4; б) –2(х – 3) ≤ 5; в) 6(х – 1) ≤ 11; г) –3(х + 4) ≥ –2.

Задание № 36.10. а) При каких значениях а двучлен 5а – 3 принимает положительные значения?
б) При каких значениях b двучлен 23b + 11 принимает отрицательные значения?

Задание № 36.11. а) При каких значениях с двучлен 13с – 22 принимает неотрицательные значения?
б) При каких значениях d двучлен 2d + 4 принимает неположительные значения?

Задание № 36.12. а) При каких значениях m двучлен 5m + 8 принимает значения большие чем 2?
б) При каких значениях n двучлен 7n + 1 принимает значения меньшие чем 1?

Задание № 36.13. а) При каких значениях р значения двучлена 9р – 2 не меньше значений двучлена 3р + 4?
б) При каких значениях q значения двучлена 11q + 3 меньше значений двучлена 5q – 6?

Решите неравенство:
Задание № 36.14.
а) 2а – 11 > а + 13; б) 8b + 3 < 9b – 2; в) 6 – 4с > 7 – 6с; г) 3 – 2х < 12 – 5х.

Задание № 36.15.

Задание № 36.16.

Задание № 36.17.

Задание № 36.18.

Задание № 36.19.

Задание № 36.20.

Задание № 36.21.

Задание № 36.22.

Задание № 36.23.

Задание № 36.24.

Задание № 36.25. а) При каких значениях переменной произведение выражений 3х + 8 и х + 12 больше утроенного квадрата второго множителя?
б) При каких значениях переменной произведение выражений 2х + 5 и 8х – 15 меньше квадрата выражения 4х – 3?

Задание № 36.26.

Задание № 36.27.

Задание № 36.28.

Задание № 36.29.

Задание № 36.30.

Задание № 36.31.

Задание № 36.32.

Задание № 36.33.

Задание № 36.34. Прежде чем разбить лагерь на берегу реки, туристы проплыли по реке и ее притоку 10 км, причем часть пути они проплыли по течению, часть – против течения. Определите, какое расстояние проплыли туристы по течению, если известно, что в пути они были менее двух часов, собственная скорость лодки равна 5 км/ч, а скорость течения реки и ее притока равна 1 км/ч.

Задание № 36.35. Дачники прошли от поселка до станции расстояние 10 км. Сначала они шли со скоростью 4 км/ч, а затем увеличили скорость на 2 км/ч. Какое расстояние они могли пройти со скоростью 4 км/ч, чтобы успеть на поезд, который отправляется со станции через 2 ч после их выхода из поселка?

Задание № 36.36. Чтобы попасть из поселка А в поселок В, нужно доехать по шоссе до пункта С, а затем свернуть на проселочную дорогу. Путь от А до С на 15 км длиннее, чем путь от С до В. Скорость мотоциклиста на шоссе равна 50 км/ч, а на проселочной дороге 40 км/ч, причем на весь путь от А до В он тратит менее трех часов. Чему равно расстояние от А до С, если известно, что оно выражается целым числом десятков километров?

Задание № 36.37. Из города А в город В, находящийся на расстоянии 240 км от А, выехал автобус со скоростью 54 км/ч. Через некоторое время вслед за ним выехал автомобиль со скоростью 90 км/ч. Прибыв в В, автомобиль тотчас повернул обратно. На каком расстоянии от А автобус встретился с автомобилем?

Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2021). ГЛАВА 5. НЕРАВЕНСТВА. § 36. Решение линейных неравенств. ОТВЕТЫ на задачи 36.1 — 36.37. Вернуться в ОГЛАВЛЕНИЕ.

Просмотров: 51 185

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: