Получение и сферы применения амфотерных металлов

Примеры решения задач

ПРИМЕР 1

Задание Осуществите ряд превращений: а) Al → Al(OH) 3 → AlCl 3 → Na; б) Al → Al 2 O 3 → Na → Al(OH) 3 → Al 2 O 3 → Al
Решение a) 2Al +6H 2 O = 2Al(OH) 3 + 3H 2

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

AlCl 3 + 4NaOH изб = Na + 3NaCl

б) 2Al + 3/2O 2 = Al 2 O 3

Al 2 O 3 + NaOH+ 3H 2 O= 2Na

2Na + H 2 SO 4 = 2Al(OH) 3 + Na 2 SO 4 + 2H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

2Al 2 O 3 = 4Al +3O 2

ПРИМЕР 2

Задание Вычислите массу соли, которую можно получить при взаимодействии 150 г 5%-го раствора аминоуксусной кислоты с необходимым количеством гидроксида натрия. Сколько граммов 12%-го раствора щелочи для этого потребуется?
Решение Запишем уравнение реакции:

NH 2 –CH 2 -COOH + NaOH= NH 2 –CH 2 -COONa + H 2 O

Вычислим массу кислоты, вступившей в реакцию:

m(NH 2 –CH 2 -COOH) = ώ к — ты ×m р — ра

m(NH 2 –CH 2 -COOH)= 0,05 × 150 = 7,5 г

Амфотерные металлы — это простые вещества, которые по структуре, химическим и сходны с металлической группой элементов. Сами по себе металлы не могут проявлять амфотерных свойств, в отличие от их соединений. Например, оксиды и гидроксиды некоторых металлов обладают двойственной химической природой — в одних условиях они ведут себя как кислоты, а в других обладают свойствами щелочей.

Основные амфотерные металлы — это алюминий, цинк, хром, железо. К этой же группе элементов можно отнести бериллий и стронций.

амфотерность?

Впервые это свойство было обнаружено достаточно давно. А термин «амфотерные элементы» был введен в науку в 1814 году известными химиками Л. Тенаром и Ж. Гей-Люссаком. В те времена химические соединения принято было разделять на группы, которые соответствовали их основным свойствами во время реакций.

Тем не менее, группа оксидов и оснований обладала двойственными способностями. В некоторых условиях такие вещества вели себя как щелочи, в других же, наоборот, действовали как кислоты. Именно так и возник термин «амфотерность». Для таких поведение во время кислотно-основной реакции зависит от условий ее проведения, природы участвующих реагентов, а также от свойств растворителя.

Интересно, что в естественных условиях амфотерные металлы могут взаимодействовать как с щелочью, так и с кислотой. Например, во время реакции алюминия с образуется сульфат алюминия. А при реакции этого же метала с концентрированной щелочью образуется комплексная соль.

Амфотерные основания и их основные свойства

При нормальных условиях это твердые вещества. Они практически не растворяются в воде и считаются довольно слабыми электролитами.

Основной метод получения таких оснований — это реакция соли металла с небольшим количеством щелочи

Реакцию осаждения нужно проводить медленно и осторожно. Например, при получении гидроксида цинка в пробирку с хлоридом цинка осторожно, каплями добавляют едкий натр. Каждый раз нужно несильно встряхивать емкость, чтобы увидеть белый осадок металла на дне посуды

Каждый раз нужно несильно встряхивать емкость, чтобы увидеть белый осадок металла на дне посуды.

С кислотами и амфотерные вещества реагируют как основания. Например, при реакции гидроксида цинка с соляной кислотой образуется хлорид цинка.

А вот во время реакций с основаниями амфотерные основания ведут себя как кислоты.

Кроме того, при сильном нагревании разлагаются с образованием соответствующего амфотерного оксида и воды.

Самые распространенные амфотерные металлы: краткая характеристика

Цинк относится к группе амфотерных элементов. И хотя сплавы этого вещества широко использовались еще в древних цивилизациях, в чистом виде его смогли выделить лишь в 1746 году.

Чистый металл представляет собой достаточно хрупкое вещество голубоватого цвета. На воздухе цинк быстро окисляется — его поверхность тускнеет и покрывается тонкой пленкой оксида.

В природе цинк существует преимущественно в виде минералов — цинкитов, смитсонитов, каламитов. Самое известное вещество — это цинковая обманка, которая состоит из сульфида цинка. Самые большие месторождения этого минерала находятся в Боливии и Австралии.

Алюминий на сегодняшний день считается наиболее распространенным металлом на планете. Его сплавы использовались на протяжении многих столетий, а в 1825 году вещество было выделено в чистом виде.

Чистый алюминий представляет собой легкий металл серебристого цвета. Он легко поддается механической обработке и литью. Этот элемент обладает высокой электро- и теплопроводностью. Кроме того, данный металл стоек к коррозии. Дело в том, что поверхность его покрыта тонкой, но очень стойкой оксидной пленкой.

На сегодняшний день алюминий широко применяется в промышленности.

Типы кристаллических решеток

Все металлы в твердом состоянии представляют собой кристаллы. Кристалл – это совокупность атомов, расположенных в пространстве не хаотично, а в геометрически правильной последовательности. Пространственное расположение атомов и образует кристаллическую решетку.

В узлах пространственной кристаллической решетки металла правильно расположены положительно заряженные ионы, а между ними перемещаются свободные электроны – электронный газ. Переходя от одного катиона к другому, они осуществляют связь между ионами и превращают кристалл металла в единое целое. Эта связь, называемая металлической, возникает между атомами металлов за счет перекрывания электронных облаков внешних электронов. Металлическая связь отличается от неполярной ковалентной связи своей ненаправленностью. В кристалле металлического типа электроны не закреплены между двумя атомами, а принадлежат всем атомам данного кристалла, т. е. делокализованы. К особенности структуры металлических кристаллов относятся большие координационные числа – 8÷12, которым соответствует высокая плотность упаковки.

Кристаллическая решетка каждого металла состоит из положительно заряженных ионов одинакового размера, расположенных в кристалле по принципу наиболее плотной упаковки шаров одинакового диаметра.

Различают три основных типа упаковки, или кристаллической решетки.

1. Объемноцентрированная кубическая решетка с координационным числом, равным 8 (натрий, калий, барий). Атомы металла расположены в вершинах куба, а один – в центре объема. Плотность упаковки шарообразными ионами в этом случае составляет 68 %.

2. Гранецентрированная кубическая решетка с координационным числом, равным 12 (алюминий, медь, серебро). Атомы металла расположены в вершинах куба и в центре каждой грани. Плотность упаковки – 74 %.

3. Гексагональная решетка с координационным числом 12 (магний, цинк, кадмий). Атомы металла расположены в вершинах и центре шестигранных оснований призмы, а еще три – в ее средней плоскости. Плотность упаковки – 74 %.

Из-за неодинаковой плотности атомов в различных направлениях кристалла наблюдаются разные свойства. Это явление, получившее название анизотропия, характерно для одиночных кристаллов – монокристаллов. Однако большинство металлов в обычных условиях имеют поликристаллическое строение, т. е. состоят из значительного числа кристаллов, или зерен, каждое из которых анизотропно. Разная ориентировка отдельных зерен приводит к усреднению свойств поликристаллического металла.

Особенности кристаллических решеток обусловливают характерные физические свойства металлов.

Что такое амфотерные металлы?

Амфотерные металлы — это класс химических элементов, которые могут проявлять свойства и способности как к окислению, так и к восстановлению в химических реакциях. Они способны сохранять устойчивость в различных окружающих условиях, взаимодействуя как с кислотами, так и с щелочами.

Амфотерные металлы обладают особой структурой своего атома, которая позволяет им быть реакционно активными с разными веществами. Они обычно находятся в центре периодической системы элементов, в середине периодов и групп, и обладают прочными связями между атомами.

Такие металлы, как алюминий, цинк, железо, свинец, медь и многие другие, являются амфотерными. Они имеют широкий спектр применений в различных отраслях промышленности. Например, амфотерные металлы используются в электронике, строительстве, производстве автомобилей и в других сферах.

Важно отметить, что реакционные свойства амфотерных металлов могут быть изменены под действием различных факторов, таких как температура, давление и наличие других соединений. Это делает эти металлы интересными объектами изучения для ученых и исследователей в области химии и материаловедения

Сплавы алюминия и цинка

В металлургии практически не применяются в чистом виде из-за высокой пластичности. Для того чтобы сохранить достоинства металлов, но убрать недостатки осуществляют сплавление с другими металлами.

Сплавы алюминия

Сплавы алюминия делятся на две группы:

  • Литейные (без сохранения пластичности);
  • Конструкционные (деформируемые).

Таблица. Характеристика основных сплавов алюминия

Сплавы цинка

Самый используемый сплав цинка – латунь (Cu — Zn). Он обладает хорошими сварными свойствами, поэтому применяется в изготовлении кухонной утвари и различных изделий интерьера.

Если к этому сплаву добавляют свинец, этот сплав называется мунц-металл. Оба сплава применяются при литье труб и каркасов.

Физические свойства алюминия

Данный металл является самым распространенным в земной коре металлом, из него делают тысячи вещей, которые окружают нас в быту: от фольги на баночке йогурта до стильного корпуса смартфона. Благодаря чему же он такой востребованный? 

  • Легкий серебристо-белый металл, покрывающийся на воздухе оксидной пленкой из-за взаимодействия с кислородом: с одной стороны, оксидная пленка защищает алюминий от воздействия окружающей среды, но с другой стороны для использования самого металла ее необходимо снять. 
  • Обладает высокой электропроводностью — способностью проводить электрический ток.
  • Легко плавится (переходит из твердого состояния в жидкое).
  • Кроме всего вышеперечисленного, огромным плюсом является его экологичность.

Почему и как алюминий применяется в пищевой промышленности? Данный металл полностью соответствует критериям экологичного материала:— Нетоксичный — не вредит живым организмам.— Практичный — легкий, устойчивый к коррозии и достаточно прочный.— Универсальный — благодаря вышеупомянутым свойствам может найти применение во всех отраслях.Алюминий находит свое применение не только в упаковке, но и в приготовлении пищи: например, формы для запекания, кастрюли и сковородки, пищевая фольга и многое другое тоже сделаны из алюминия.Использование алюминия в пищевой промышленности позволяет увеличить срок годности продуктов, защитить пищу от бактерий и окисления, уменьшить стоимость транспортировки и даже улучшить внешний вид, так как на фольгу хорошо наносится краска.А вот шапочка из фольги, несмотря на все уверения из интернета, вещь бесполезная, а иногда даже опасная…

Продолжая наше сравнение, посмотрим на физические свойства цинка.

Амфотерность как химическое свойство[править | править код]

Амфотерность как химическое свойство вещества может проявляться по-разному:

1. В рамках теории электролитической диссоциации это способность вещества к электролитической диссоциации как по механизму кислот (с отщеплением ионов гидроксония, H+ ), так и по механизму оснований (отщепление гидроксид-ионов, OH– ). Электролиты, которые в растворе ионизируются одновременно по кислотному и основному типам называются амфолитами. Если обозначить амфотерный электролит формулой XOH, то его диссоциацию можно описать схемой:

Например, кислотно-основные свойства азотистой кислоты определяются равновесными процессами диссоциации с образованием нитрит-аниона и нитрозильного катиона:

Идеальным амфолитом будет вода:

Также к числу идеальных амфолитов относят гидроксид галлия Ga(OH)3, вторые и третьи константы диссоциации которого по кислотному и основному типам практически одинаковы.

2. В рамках протолитической теории Брёнстеда-Лоури проявление амфотерности рассматривается как способность протолита выступать донором и акцептором протона. Например, для воды амфотерность проявляется как автопротолиз:

Амфолитами также будут вещества, имеющие в своём составе функциональные группы, способные быть донорами и акцепторами протонов. Например, к амфотерным органическим электролитам относятся белки, пептиды и аминокислоты. Так аминокислоты имеют в своём составе, по крайней мере, карбоксильную группу –COOH и аминогруппу –NH2. В растворе эти группы подвергаются частичной ионизации:

Таким образом, молекула аминокислоты находится в двух равновесных формах, заряженной (цвиттер-ион) и незаряженной. В этих комбинациях R–COOH и R–NH3+ являются потенциальными кислотами (донорами протонов, катионов), а R–COO– и R–NH2 – сопряженными потенциальными основаниями (акцепторами протонов, катионов).

3. Амфотерность может проявляться как способность вещества к взаимодействию как с кислотами, так и с основаниями. Это характерно для оксидов, гидроксидов и комплексных соединений некоторых p-элементов и большинства d-элементов в промежуточных степенях окисления. Амфотерность в той или иной степени является общим свойством гидроксидов. Например, для соединений хрома (III) известны реакции:

Не соответствуют действительности традиционные представления о проявлении амфотерности гидроксидов как диссоциации по кислотному и основному типам. В общем виде амфотерное поведение нерастворимых гидроксидов хрома (III), алюминия, цинка может быть описано как реакции ионного обмена ионов среды с лигандами H2O и OH–. Например, для Al(OH)3 ионные равновесия могут быть записаны следующим образом:

4. В ряде случаев важным косвенным признаком амфотерности является способность элемента образовывать два ряда солей, катионного и анионного типа. Например, для цинка: ZnCl2, SO4 (катионные) и Na2ZnO2, Na2(Zn(OH)4) (анионные).

Способы получения алюминия

Для начала вспомним, что в зависимости от степени активности металла могут применяться различные способы получения.

Для того, что понять, какой металл будет активным, а какой нет, вспомним, что такое ряд активности металлов.

Ряд активности металлов — это ряд, использующийся на практике для относительной оценки химической активности металлов в реакциях с водными растворами солей и кислот.

Таким образом, чем ближе металл к началу этого ряда, тем активнее он проявляет себя в упомянутых в определении реакциях. 

Элементы этого ряда условно подразделяют на:

  • активные металлы;
  • металлы средней активности;
  • неактивные металлы. 

В зависимости от активности металла, способы получения будут различными:

  • для активных металлов применяется электролиз расплава солей и некоторые иные реакции, используемые только для отдельных элементов, как, например, электролиз оксида алюминия в расплаве криолита;
  • для металлов средней активности и неактивных используется электролиз растворов солей;
  • для некоторых металлов возможно получение через реакции восстановления.

Для активных металлов, в том числе алюминия, при электролизе водного раствора солей идет электролиз воды с образованием водорода на катоде, сам металл не выделяется, поэтому электролиз раствора нам не подойдет. Обычно мы получаем активные металлы путем электролиза солей в расплаве, но для получения алюминия используется иной, особенный способ — электролиз оксида алюминия в расплаве криолита. 

Криолит — это алюминийсодержащий минерал с формулой Na3[AlF6].

Если нам попадется задание на получение алюминия, то мы не задумываемся и всегда выбираем именно этот способ получения.

Для этой реакции необходимо нагревание и пропускание электрического тока:

2Al2O3 (t, эл. ток) = 4Al + 3O

На вес золота: почему алюминий когда-то был ценнее драгоценных металлов?В 19 веке цена на алюминий превышала стоимость золота. И все это из-за сложности получения металла без примесей.По приказу Наполеона III были изготовлены алюминиевые столовые приборы, которые подавались на торжественных обедах императору и самым почетным гостям. Остальные гости при этом пользовались приборами из иных драгоценных металлов вроде золота и серебра. В те времена каждая парижская модница непременно должна была иметь в своем наряде хотя бы одно украшение из алюминия — металла, ценившегося в то время выше серебра и золота. 

Характеристика амфотерных металлов

Итак, амфотерных металлов очень много. Их порядковые номера в периодической таблице: 4, 13, с 22 по 32, с 40 по 51, с 72 по 84, со 104 по 109. Как мы видим, «разброс» действительно очень большой. Что же между ними общего? 

  1. Они все металлы, то есть химические элементы, атомы которых способны отдавать электроны с внешнего энергетического уровня, превращаясь в положительные ионы (катионы) и проявляя восстановительные свойства.О том, что такое восстановительные свойства, можно прочитать в статье «Окислительно-восстановительные реакции».
  2. Так как они металлы, значит, в виде простых веществ обладают характерными металлическими свойствами:
  • высокие тепло- и электропроводность;
  • высокая пластичность;
  • ковкость;
  • характерный металлический блеск.

Теперь нам важно вспомнить, что металлы в зависимости от валентности (способности составлять определенное число химических связей) могут образовывать разные соединения. Это — основные, амфотерные и кислотные оксиды

Предсказать свойства оксида металла поможет эта схема:

Основные свойства отражают способность вещества взаимодействовать с кислотами, кислотные — способность реагировать с основаниями.

А, как вы уже могли догадаться, с понятием амфотерности мы разберемся сегодня.

Амфотерность — это способность веществ взаимодействовать как с соединениями, проявляющими кислотные свойства, так и с соединениями, проявляющими основные свойства, в зависимости от условий и природы реагентов, участвующих в реакции. 

Как и мы порой делаем сложный выбор, так и амфотерные металлы зачастую не могут сразу определиться.

Амфотерными также будут являться и соединения таких металлов: оксиды (соединения с кислородом в степени окисления -2) и гидроксиды (соединения с ОН-группой). 

Список амфотерных металлов включает в себя множество наименований. Мы сегодня рассмотрим цинк и алюминий, которые чаще всего встречаются на экзамене. Они почти как двойники — имеют общие химические и физические свойства, но также обладают некоторыми отличиями.

Начнем с химических характеристик алюминия.

Представители амфотерных элементов

Все элементы побочных групп являются амфотерными и проявляют сходные химические свойства. Наиболее распространены в природе три элемента: Al, Zn и Cr.

Цинк как амфотерный элемент

Цинк — это относительно мягкий светло-серый металл. Является одним из самых распространенных амфотерных элементов. В природе цинк встречается в составе 66 минералов, наиболее распространенные представлены в таблице.

Таблица. Минералы, в состав которых входит Zn

Цинк является d-элементом.

1s22s22p63s23p63d104s2

Химические свойства цинка обусловлены наличием незаполненной p-обитали. С s-подуровня происходит перескок электрона, за счет чего появляется два неспаренных электрона: Zn* 1s22s22p63s23p63d104s14p1.

Алюминий как амфотерный элемент

Al является самым распространенных элементом не только среди металлов, но и во всей таблице Менделеева. Он занимает 3 место после кислорода (O2) и кремния (Si).

Это мягкое вещество серебристо-серого цвета с низкой температурой плавления. В природе встречается как в виде минералов, так и в виде самородков. Является примесью многих минералов.

Наиболее распространенные минералы, содержащие Al:

  • Авгит ((Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6)
  • Боксит (Al2O3xH2O)
  • Нефелин (Элиолит) ((NaK)AlSiO4)
  • Алунит (K2SO4Al2(SO4)3·4Al(OH)3)
  • Силлиманит ((Al2O3)(SiO2))
  • Корунд (Al2O3)

Последний минерал в зависимости от примесей имеет разный окрас. Применяется в ювелирном деле и считается полудрагоценным камнем.

Его атом содержит 13 электронов, распределенных по 3 электронным уровням: 1s22s22p63s23p1. Это р-элемент, у которого может происходить переход электрона с s-подуровня на свободную р-орбиталь. За счет этого, металл приобретает 3 неспаренных электрона: Al* 1s22s22p63s13p2

Тривиальные названия неорганических веществ

Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.

Список тривиальных названий неорганических веществ, которые необходимо знать:

Na3[AlF6] криолит
SiO2 кварц, кремнезем
FeS2 пирит, железный колчедан
CaSO4∙2H2O гипс
CaC2 карбид кальция
Al4C3 карбид алюминия
KOH едкое кали
NaOH едкий натр, каустическая сода
H2O2 перекись водорода
CuSO4∙5H2O медный купорос
NH4Cl нашатырь
CaCO3 мел, мрамор, известняк
N2O веселящий газ
NO2 бурый газ
NaHCO3 пищевая (питьевая) сода
Fe3O4 железная окалина
NH3∙H2O (NH4OH) нашатырный спирт
CO угарный газ
CO2 углекислый газ
SiC карборунд (карбид кремния)
PH3 фосфин
NH3 аммиак
KClO3 бертолетова соль (хлорат калия)
(CuOH)2CO3 малахит
CaO негашеная известь
Ca(OH)2 гашеная известь
прозрачный водный раствор Ca(OH)2 известковая вода
взвесь твердого Ca(OH)2 в его водном растворе известковое молоко
K2CO3 поташ
Na2CO3 кальцинированная сода
Na2CO3∙10H2O кристаллическая сода
MgO жженая магнезия

Свойства и применение неметаллов

Неметаллы — это элементы, обладающие определенными свойствами, которые отличают их от металлов. Они обычно обладают низкой электропроводностью и благородным ионным характером. К неметаллам относятся, например, кислород, фосфор, сера, азот и хлор.

Одним из основных свойств неметаллов является их способность образовывать соединения с металлами, которые обычно являются ионными. Неметаллы также проявляют себя как окислители, то есть они могут отдавать электроны другим элементам.

Применение неметаллов разнообразно и широко. Кислород, например, является одним из основных элементов для поддержания горения и дыхания. Фосфор используется в производстве удобрений и стекла, азот — в поддержании атмосферы и в производстве азотной кислоты. Сера используется в производстве гуманитарных товаров и лекарственных препаратов. Хлор применяется во многих отраслях, включая производство пластмасс, химических веществ и водопроводных систем.

Некоторые неметаллы, такие как галогены (хлор, фтор, бром) и двойники кислорода (селен, теллур), имеют сильные ядовитые свойства. Они используются в медицине для лечения различных заболеваний, а также в химической промышленности для производства различных продуктов.

Таким образом, неметаллы играют важную роль в различных областях человеческой деятельности, от промышленности до медицины. Их свойства и применение делают их незаменимыми элементами нашей жизни.

Геохимия алюминия

Самый распространенный минерал алюминия — это его оксид Al2O3. В природе он встречается в разных минералах, из которых самый распространённый — боксит Al2O3 * xH2O:

Боксит

Включения других элементов в состав минерала делают его необычайно красивым. Прекрасные рубин, сапфир, топаз, аквамарин представляют из себя минералы, состоящие в основном из оксида алюминия, цвет которых обеспечивается за счет примесей — соединений хрома(II и III), железа, титана, марганца и многих других.

  • Рубин
  • Сапфир
  • Топаз

Озеро близ города Кыштым (Челябинская область), цвет которого вызван наличием каолиновой глины, в состав которой входит алюминий

Вместе с кремнием алюминий образует группу самых распространённых в земной коре минералов. Их объединяют под общим названием — алюмосиликаты, подчёркивая наличие алюминия и кремния (silicium) в их составе.

Аквамарин

Свойства металлов Al и Zn как простых веществ

Цинк – довольно плотный металл. Сохраняет свои качества в небольшом диапазоне температур: при низких значениях (до -30) становится хрупким, при температурах выше 100С очень пластичен. Это используется в металлургии, прокатывая цинковые листы толщиной несколько миллиметров (цинковая фольга). Некоторые примеси резко повышают хрупкость металла, поэтому используется очищенный материал.

Al – сильно пластичный легкий металл с низкой температурой плавления. Обладает высокой ковкостью и электропроводностью.

На воздухе он покрывается оксидной пленкой поэтому практически не подвергается коррозии. Благодаря этому он используется при изготовлении проводов и корпусов машинной техники.

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: