Формулы площади

Периметр, площадь и объём

Как найти площадь

Площадь — это количество площадных единиц, которыми заполнена поверхность фигуры. Часто в математике рассматриваются площади прямоугольников, кругов, треугольников и других фигур.

Для нахождения площади прямоугольника необходимо умножить длину на ширину. Формула выглядит так: S = a x b, где S — площадь, a — длина, b — ширина.

Для нахождения площади треугольника необходимо умножить половину основания на высоту. Формула выглядит так: S = 0.5 x a x h, где S — площадь, a — основание, h — высота.

Площадь фигур можно также находить, разбивая их на простые фигуры (прямоугольники, треугольники, круги) и находя их площади по формулам, а затем складывая результаты.

Начиная с 3 класса, дети учатся находить площадь простых фигур и решать задачи, которые связаны с площадью. Это важный навык, который будет полезен в жизни и дальнейшем обучении.

Формула площади для квадрата и прямоугольника

Геометрия, как часть математики, рассматривает целый ряд геометрических фигур: круг, квадрат, прямоугольник, треугольник и многих других.

Геометрические фигуры являются множеством точек на плоской поверхности, которые соединяются прямыми и на выходе становятся разными фигурами с разными особенностями.

Параметры геометрических фигур, такие как длины сторон, периметр, площадь, можно находить разными способами в зависимости от типа фигуры.

Площадь в геометрии обозначается знаком S, от английского square — площадь. Понятием площади пользуются как люди науки — математики, физики, так и люди рабочих профессий, например, строители.

Данная характеристика измеряется в единицах измерения в квадрате, например, квадратный сантиметр (см2), квадратный метр (м2), гектар (га).

Квадрат и прямоугольник являются фигурами, у которых есть по 4 прямых угла. Их отличает только длина сторон — у прямоугольника не все 4 стороны равны, они равны попарно относительно противоположных.

Площадь правильно построенного прямоугольника можно найти через перемножение его сторон друг на друга.

С помощью данной формулы можно найти площади классов или комнат, а также стен, что может помочь как в решении математических, так и бытовых задач.

3d моделью прямоугольника можно считать параллелепипед.

Площадь квадрата можно найти двумя способами:

  • по длине стороны в квадрате;
  • по длине диагонали.

Так как квадрат является частным случаем прямоугольника, его площадь также можно найти по формуле S = a * b , однако в таком случае a и b будут равны, а формула по смыслу будет повторять выше написанную.

В некоторых случаях необходимо нахождение площади квадрата через диагональ. Это может быть связано с решением определенной геометрической задачи или в связи с практическим удобством.

Площади простых фигур

Формула для определения площади зависит от фигуры. Обозначение площади, чаще всего, остается неизменным – это латинская заглавная буква “S”. Это не правило, просто одна из традиций обозначения площади. В высшей математике, теплотехнике и многих других дисциплинах площадь могут обозначать другими буквами.

Рассмотрим наиболее популярные формулы определения площадей:

  • Прямоугольник. S=a*b – произведение длины на ширину.
  • Треугольник. $S={1\over2}a*h$ – половина произведения основания на высоту, проведенную к этому основанию.
  • Круг. $S=\pi*r^2$ – отдельно нужно отметить, что окружность площади иметь не может. Только круг.

Рис. 1. Высота в произвольном треугольнике.

Предварительно нужно убедиться в том, что параметры фигуры находятся в одинаковых единицах измерения. Например, когда ширина прямоугольника представлена в миллиметрах, а длина в сантиметрах, следует перевести сантиметры в миллиметры и только потом использовать формулу.

Рис. 2. Площадь прямоугольника.

Что такое площадь квадрата? Это сторона фигуры, возведенная в квадрат. Потому что квадрат это прямоугольник, длина и ширина которого равны:

$$S=a^2$$

Если у квадрата одна сторона равняется 100 м, то его площадь равна одному гектару. Эту единицу используют, когда необходимо оценить размеры земной поверхности при распределении сельскохозяйственных угодий:

$$1га=100м∙100м=10 000м^2$$

Площади полей могут также измерять в арах, что в народе называют «соткой», потому что один ар – это квадрат, сторона которого равняется 10 м, а его площадь соответственно 100 $м^2$.

$$1 ар=100м^2$$.

Формула площади круга

Круг – это геометрическая фигура, образованная всеми точками плоскости, которые находятся на одинаковом расстоянии от заданной точки центра.

Площадь круга можно вычислить по формуле:

S = πr2

где π – математическая константа, равная приблизительно 3,14.

r – радиус круга, расстояние от центра круга до любой точки на его окружности.

Таким образом, чтобы найти площадь круга, необходимо умножить квадрат радиуса на число π.

Например, если радиус круга равен 5 см, то его площадь будет:

S = πr2 = 3,14 * 5 2 = 78,5 см2

Таким образом, формула площади круга может оказаться полезной во многих областях, таких как инженерия, физика, геометрия и многое другое.

Определение понятия

Площадь указывает на размер плоскости, которую занимает фигура. Если вырезать любую фигуру из листа бумаги, положить на поверхность, а потом обвести карандашом, мы получим визуальное воплощение характеристики площади.

Площади двух абсолютно разных фигур могут быть одинаковыми. Почему так происходит? Потому что площадь – это характеристика. Можно провести простую аналогию с деньгами: сто грамм конфет и полкилограмма крупы стоят одинаково, но это совершенно разные вещи. Так треугольник и прямоугольник могут иметь одинаковую площадь. Фигуры, имеющие одинаковую площадь, называют равновеликими.

Квадратный сантиметр, дециметр, метр

Какой меркой лучше измерить площадь фигуры квадрата и прямоугольника?

В 18 веке на Руси вводилась основная мера измерения площади — десятина и четь. Но поля крестьян были неровными, поэтому часто мерками служила урожайная копна. Народ изобретал особые мерки: выть, соха, обжа, коробь, веревка, жеребья. Сейчас мы не используем этих мер.

Начертите прямоугольник со сторонами 5см и 4см. Какими мерками можно измерить фигуру?

Посмотрите на рисунок, утенок измерил прямоугольник с помощью треугольников, ежонок — квадратами, а котенок — прямоугольниками.

Посчитаем, сколько единичных мерок находится в прямоугольнике. У животных получились разные величины: 40, 20, 10.

Всегда ли удобно определять площадь фигуры произвольными мерками?

Конечно, нет.

Вывод: значение величины зависит от выбранной мерки. Чтобы сравнить, нужно договориться об одинаковом способе измерения.

Всегда ли для определения площади фигуры подходит клетка?

Да.

Какого размера должна быть клетка?

Я предлагаю измерять как ежик, квадратами по 2 клеточки.

Измерьте длину и ширину этого квадратика. Что получилось?

Длина и ширина равна 1 см.

Единицей измерения площади еще 4-5 тысяч лет тому назад жители древнего города Вавилона считали квадрат, так как именно квадрат имеет превосходные признаки: четыре стороны равны межу собой, четыре прямых угла; можно провести ось и найти центр симметрии. Форма квадрата без изъянов, совершенна, поэтому его легко начертить и плотно покрыть фигуры любой формы.

Если у квадратика сторона 1см – площадь его равна квадратному сантиметру.

1 квадратный сантиметр сравним с ноготком взрослого человека.

Записывается площадь 1 квадратного сантиметра так:

S = 1 кв. см или S = 1 см2

Латинская буква «эс» обозначает площадь, двойка в правом верхнем углу — две величины: длину и ширину.

Начертите квадрат со стороной 10 сантиметров.

Квадратный дециметр (1 дм 2) — это квадрат со стороной 1 дм или 10 см.

Квадратный метр (1 м 2) — это квадрат со стороной 1 м или 10 дм. В квадратных метрах обозначается площадь в жилых помещениях, например: в комнатах, коридорах. Эта мерка подойдет для измерения дачного участка, спортивного зала, территории сквера.

А при строительстве школ важно учитывать, сколько квадратных метров должно быть в классе, если для одного ученика по санитарным правилам нужно 4 квадратных метра. Вы хорошо справляетесь с заданиями

Спине, голове, всему телу нужен отдых. Встаньте на физкультурную минутку

Вы хорошо справляетесь с заданиями. Спине, голове, всему телу нужен отдых. Встаньте на физкультурную минутку.

Физкультминутка

Поднимитесь, вверх потянитесь,

Вперед наклонитесь.

Ниже, ниже тянитесь,

Достаньте мизинцем до пятки.

Получилось? Тогда все в порядке.

Выпрямитесь, грудью вздохните,

Руки шире в стороны разведите.

Соедините в замок на лопатках.

Получилось? Тогда все в порядке.

Глазки зажмурьте, спокойно постойте.

Отдохнули? Теперь посчитайте площадки.

Таблица квадратов

В жизни часто приходиться находить площади различных квадратов. Для этого каждый раз требуется возводить исходное число во вторую степень.

Квадраты первых 99 натуральных чисел уже вычислены и занесены в специальную таблицу, называемую таблицей квадратов.

Первая строка данной таблицы (цифры от 0 до 9) это единицы исходного числа, а первый столбец (цифры от 1 до 9) это десятки исходного числа.

Например, найдём квадрат числа 24 по данной таблице. Число 24 состоит из цифр 2 и 4. Точнее, число 24 состоит из двух десятков и четырёх единиц.

Итак, выбираем цифру 2 в первом столбце таблицы (столбце десятков), а цифру 4 выбираем в первой строке (строке единиц). Затем, двигаясь вправо от цифры 2 и вниз от цифры 4, найдём точку пересечения. В результате окажемся на позиции, где располагается число 576. Значит, квадрат числа 24 есть число 576

242 = 576

Квадрируемые фигуры.

Сейчас выясним как же выглядят и как задаются квадрируемые фигуры. Другими словами, площадь каких фигур нам предстоит находить.

Сразу скажем, что фигуры, с которыми мы обычно встречаемся в геометрии (круг, эллипс, квадрат и т.п.), являются квадрируемыми.

Отметим, что любая квадрируемая фигура ограничена. То есть, мы не будем говорить о площади неограниченных фигур.

Объединение и пересечение, а также разность квадрируемых фигур есть квадрируемая фигура.

Сейчас перечислим виды квадрируемых фигур, с которыми мы будем наиболее часто встречаться при вычислении площадей.

  • Фигура квадрируема, если она ограничена непрерывными линиями, являющимися частями графиков функций y = f(x) и x = g(y). Ниже приведены примеры таких фигур. На первом рисунке область сверху ограничена параболой , снизу кривой , справа и слева прямыми x = 1 иx = 9. На втором рисунке в качестве границ области выступают линии .

    Примеры вычисления площадей таких фигур Вы можете посмотреть в статьенахождение площади фигуры, ограниченной линиями y=f(x), x=g(y).

  • Фигура квадрируема, если она ограничена гладкими кривыми. То есть, часть границы может быть задана параметрически . Функции  и непрерывны вместе со своими производными на некотором интервале  и не имеют самопересечений, что равносильно условию  для любого . В качестве примера можно привести фигуру, ограниченную осями координат и частю астроиды  для .

    Нахождению площадей таких квадрируемых фигур посвящена статья вычисление площади фигуры, ограниченной параметрически заданной кривой.

  • Фигура квадрируема, если она ограничена простыми замкнутыми кривыми, начало которых совпадает с концом (наиболее часто задаются в полярной системе координат). Для примера приведем один лепесток фигуры .

    Можете ознакомиться с материалом статьи вычисление площади фигуры в полярных координатах.

Подведем итог.

Вопрос-ответ:

Как найти площадь треугольника по формуле?

Используя правило «площадь треугольника равна половине произведения длины основания и высоты, опущенной на это основание», мы можем вычислить площадь треугольника и записать формулу: S=0.5*a*h, где a — длина основания, h — высота, опущенная на это основание.

Как найти площадь треугольника, если неизвестна высота?

Если высота треугольника неизвестна, но известны длины всех сторон a, b и c, можно воспользоваться формулой Герона: S=sqrt(p*(p-a)*(p-b)*(p-c)), где p — полупериметр треугольника (p=(a+b+c)/2).

Как найти площадь треугольника, если неизвестна длина высоты?

Если длина высоты неизвестна, но известны длины всех сторон a, b и c, можно воспользоваться формулой Герона и вычислить площадь треугольника. Затем, используя формулу S=0.5*a*h, вычислить высоту h, опущенную на основание a.

Как найти площадь прямоугольника?

Площадь прямоугольника равна произведению длины одной стороны на длину другой стороны: S=a*b, где a и b — длины сторон прямоугольника.

Как найти площадь круга?

Площадь круга равна произведению площади кругового сегмента (круговой сектор исходного круга, ограниченный двумя радиусами и дугой) на 2, то есть S=2*pi*r^2, где pi — число пи (приблизительно равно 3.14), r — радиус круга.

Как найти площадь трапеции?

Площадь трапеции равна половине суммы длин оснований (a и b) умноженной на высоту, опущенную на это основание (h). То есть S=0.5*(a+b)*h.

Что такое периметр и площадь

Периметр – это геометрический термин, который часто встречается в задачах. Чтобы понять, что такое периметр, следует нарисовать произвольный многоугольник и вооружиться линейкой. В переводе с греческого языка этот термин обозначает «измеряю вокруг».

Периметр обозначается латинской буквой P. Его можно измерить в сантиметрах, миллиметрах, метрах или дециметрах. Чтобы узнать периметр, следует измерить длину всех сторон многоугольника. Полученные значения нужно сложить. Итоговая сумма и станет ответом на вопрос: «Чему равен периметр многоугольника».

Периметр – это длина линий, которые ограничивают замкнутую фигуру (квадрат, прямоугольник, треугольник и др.).

Например, перед вами многоугольник со сторонами 10, 12, 13 и 11 см. Складываем вышеназванные числа (10+12+13+11) и получаем сумму 46. Это и есть периметр многоугольника.

Для удобства вычисления периметра в геометрии существует ряд формул. Каждая формула соответствует определенной фигуре.

Периметр и площадь квадрата

Это сумма его четырех сторон. Как мы знаем, все стороны квадрата имеют равный размер. Поэтому мы можем узнать периметр квадрата, умножив длину его стороны на четыре:

  • P= a*4
  • P= a+a+a+a

Например, перед нами квадрат со стороной 10 см:

  • P= 10*4
  • P=40

Ответ: 40 см

  • P= 10+10+10+10
  • P=40

Ответ: 40 см

Чтобы разобраться, что такое периметр и площадь, следует уяснить, что периметр вычисляет длину контура фигуры, а площадь – размер всей ее поверхности.

Чтобы узнать площадь квадрата, необходимо воспользоваться простой формулой:

  • S= a*a
  • S=a2

S – это площадь, а – сторона квадрата.

Например, в задаче указано, что длина стороны квадрата составляет 10см.

  • S=10*10
  • S= 100см2

Ответ: 100см2

Периметр и площадь прямоугольника

Стороны прямоугольника, находящиеся друг напротив друга и имеющие одинаковую длину, называются противолежащими. Это длина и ширина, они условно обозначаются латинскими буквами a и b. Формула для вычисления периметра прямоугольника выглядит так:

P= (a+b)*2

Используя эту формулу, мы сначала находим сумму ширины и длины, а затем умножаем ее на два. Например, перед нами прямоугольник, имеющий длину 6 см и ширину 2 см:

  • P= (6+2) * 2
  • P= 16

Ответ: 16 см

Чтобы узнать площадь прямоугольника, следует длину умножить на ширину. Формула выглядит так:

S= a*b

Например, в условиях задачи сказано, что прямоугольник имеет длину 5 см и ширину 2см. Меняем буквы a и b на указанные числа:

  1. S= 5*2
  2. S=10см2

Ответ: 10 см2

Периметр круга (длина окружности)

Каждый круг имеет центр. Расстояние от центра круга до любой точки, расположенной на окружности, имеет название радиус круга. Часто ученики путают понятия «круг» и «окружность» и пытаются определить площадь окружности. Это серьезная ошибка. Следует разделить в голове понятия «круг» и «окружность». У окружности нет и не может быть площади, у нее есть только длина.

Чтобы найти периметр круга, следует вычислить длину его окружности. Существует формула для нахождения длины окружности:

  • L = 2πr
  • L= 2πd

L – длина окружности

π – это число «пи», математическая константа. Она равна отношению длины окружности к длине ее диаметра. Древнее название числа «пи» – лудольфово число. Это число иррационально, его десятичное представление после точки никогда не заканчивается.

π = 3.141 592 653 589 793 238 462 643 383 279 502

Для удобства вычислений обычно используют значение 3.14

R – это радиус окружности

D – Диаметр окружности

Итак, чтобы определить периметр круга, надо найти произведение радиуса и 2π. Если в задаче указан диаметр, то

Например, перед нами круг с радиусом 3 см. Найдем его периметр:

  • L= 2*3,14*3
  • L=6π
  • L=6*3.14
  • L = 18.84 см
  • Pк= 18,84 см

Ответ: 18.84 см

Отличие периметра от площади

Площадь – это размер поверхности фигуры, а периметр – это сумма ее границ. Площадь всегда измеряется в квадратных единицах (см2, м2, мм2). Периметр измеряется в единицах длины – в сантиметрах, миллиметрах, метрах, дециметрах.

Формулы площади квадрата

Альберт Эйнштейн и формула площади квадрата

Однажды, в одном городе, жил-был ученый по имени Альберт Эйнштейн. Он был известен своими открытиями в области физики и математики, но однажды он столкнулся с проблемой, которая казалась ему неразрешимой.

Однажды Альберт решил провести эксперимент, чтобы доказать свою теорию о том, что площадь квадрата равна квадрату его длины. Но как он ни старался, он не мог найти способ, как это сделать.

Он провел множество экспериментов, использовал различные методы и инструменты, но все было напрасно.

В конце концов, он решил обратиться за помощью к своим коллегам-ученым.

Когда он пришел к ним, они были удивлены его просьбой. Они сказали ему, что это невозможно, потому что площадь квадрата не может быть выражена в виде формулы.

Но Альберт не сдавался. Он продолжал искать решение этой проблемы.

И однажды, когда он сидел в своем кабинете, его осенило. Он понял, что площадь квадрата можно выразить в виде формулы, если использовать не длину стороны квадрата, а его диагональ.

И вот, наконец, Альберт нашел решение своей проблемы. Он создал формулу, которая позволяла вычислить площадь квадрата по его диагонали. Это было настоящим прорывом в науке!

С тех пор Альберт стал известен как создатель формулы площади квадрата. Его открытие стало одним из самых важных в истории математики и физики.

Формула нахождения площади в математике

Существует множество формул нахождения площади простых геометрических фигур, которые зависят, в основном, от количества углов, сторон и их соотношений.

Площадь прямоугольника

Прямоугольником является геометрическая фигура, все углы которой равны 90°. При этом таких углов должно быть, как минимум три, а четвертый будет равен 90° в силу закона о сумме углов четырехугольника в евклидовой геометрии.

Площадь квадрата

Квадратом является прямоугольник с равными сторонами. Все его углы равны 90°. Площадь квадрата можно найти сразу двумя способами:

  • по длине стороны;
  • через его диагонали.

По длине стороны:

Через диагонали:

Площадь круга

Кругом является часть плоскости, которая лежит внутри окружности. Круг не имеет ни одного угла, а точки его окружности находятся на равном удалении от центра.

Площадь круга можно найти двумя способами:

  • через его радиус;
  • через его диаметр.

Через радиус:

Радиус, упоминаемый в формуле, является линией или отрезком, соединяющим центр и любую из точек окружности.

Через диаметр:

Диаметр является отрезком, соединяющим две точки окружности и проходящим через центр. Он включает в себя два противоположно направленных радиуса.

Площадь эллипса

Эллипс является частным случаем окружности. Он, так же, как и круг, не имеет ни одного угла, но при этом точки окружности находятся на разном удалении от центра.

Найти площадь эллипса можно только одним способом: через произведение длин большой и малой полуосей эллипса и числа пи.

Площадь параллелограмма

Параллелограмм является геометрической фигурой с 4 углами и 4 сторонами, однако он отличается от прямоугольника по строению. Его противолежащие стороны попарно параллельны, а углы равны зеркально противолежащим.

Частными случаями параллелограмма являются квадрат, прямоугольник и ромб.

Найти площадь параллелограмма можно тремя способами:

  • через сторону и высоту;
  • через две его стороны и величину угла между ними;
  • через диагонали и угол между ними.

Через сторону и высоту:

Через две стороны и величину угла между ними:

Через диагонали и угол между ними:

Площадь ромба

Площадь ромба также можно найти тремя способами:

  • по длине стороны и высоте;
  • по длине стороны и углу;
  • по длине его диагоналей.

По длине стороны и высоте:

По длине стороны и углу:

По длине его диагоналей:

Площадь трапеции

Трапеция отличается от всех предыдущих фигур тем, что только две ее стороны, боковые, могут быть равны между собой. При этом они не параллельны. Две другие стороны параллельны, но не равны. Сумма углов трапеции равна 360°.

Площадь трапеции можно найти двумя способами:

  • по формуле Герона;
  • по длине основ и высоте.

По формуле Герона:

По длине основ и высоте:

Площадь треугольника

Треугольник является геометрической фигурой с тремя сторонами и суммой углов, равной 180°. По величине углов треугольники делятся на острые, тупые и прямоугольные. По числу равных сторон треугольники делятся на разносторонние, равносторонние и равнобедренные.

Площадь треугольника можно найти множеством способов:

  • по гипотенузе и острому углу;
  • через сторону и высоту;
  • через три стороны;
  • через две стороны и угол между ними;
  • через три стороны и радиус описанной окружности;
  • через три стороны и радиус вписанной окружности.

По гипотенузе и острому углу:

Через сторону и высоту:

Через три стороны:

Через две стороны и угол между ними:

Через три стороны и радиус описанной окружности:

Через три стороны и радиус вписанной окружности:

Характеристики понятия

Площадь имеет несколько характеристик:

  • Положительность. Площадь не может быть отрицательной, как не может быть отрицательным пространство. Есть единственный случай, когда площадь стремится к нулю: измерение площади точки.
  • Нормируемость.

    Что это значит? Это значит, что у площади есть какая-то норма, с которой и сравнивают поверхность любой фигуры. Норма площади это квадрат со сторонами 1 на 1. Если это квадрат со сторонами 1 на 1 см, то единица измерения площади будет называться см квадратный и т.д.

  • Если две фигуры объединить, так, что они не будут иметь общих внутренних точек, то есть совместить фигуры по какой-либо стороне, то площадь получившейся фигуры будет равна сумме площадей двух изначальных фигур.

На практике площадь можно определять с помощью палетки или специального измерительного прибора – планиметра.

Единицы измерения площади

Площадь фигуры может измеряться в разных единицах в зависимости от поверхности, на которой располагается. Основной системой измерения считается Международная система единиц СИ.

Площадь измеряется в единицах измерения в квадрате:

  • барн — 1- — 28 м2;
  • квадратный миллиметр — 1 мм2;
  • квадратный сантиметр — 1 см2;
  • квадратный метр — 1 м2;
  • квадратный километр — 1 ки2;
  • ар — 1а = 100 м2;
  • гектар — 1 га = 10000м2 и другие.

В Древней Руси употребляли такие величины, как квадратная верста, десятина, квадратный сажень.

В античных источниках единицей измерения площади были актус, арура, центурия, югер.

В некоторых странах есть свои единицы измерения площади, например, рай в Таиланде. Также другими единицами измерения могут пользоваться разные виды научного знания, например, понятием планковской площади пользуется ядерная физика.

Единицы измерения площади земельных участков

Площади небольших земельных участков удобно измерять в квадратных метрах.

Площади более крупных земельных участков измеряются в арах и гектарах.

Ар (сокращённо: a) — это площадь равная ста квадратным метрам (100 м2). В виду частого распространения такой площади (100 м2) она стала использоваться, как отдельная единица измерения.

Например, если сказано что площадь какого-нибудь поля составляет 3 а, то нужно понимать, что это три квадрата площадью 100 м2 каждый, то есть:

3 а = 100 м2 × 3 = 300 м2

В народе ар часто называют соткой, поскольку ар равен квадрату, площадью 100 м2. Примеры:

1 сотка = 100 м2

2 сотки = 200 м2

10 соток = 1000 м2

Гектар (сокращенно: га) — это площадь, равная 10 000 м2. Например, если сказано что площадь какого-нибудь леса составляет 20 гектаров, то нужно понимать, что это двадцать квадратов площадью 10 000 м2 каждый, то есть:

20 га = 10 000 м2 × 20 = 200 000 м2

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: