Алгебра 8 Мордкович (упр. 36.1 — 36.37)
§ 36. Решение линейных неравенств.
Задание № 36.1. Является ли решением неравенства 2а + 3 > 7а – 17 значение а, равное: а) 2; б) 6,5; в) –√2; г) √18 ?
Задание № 36.2. Какое из чисел –1, 7, √5, 3/7 является решением неравенства 3х > х + 2?
Задание № 36.3. Найдите любые два решения неравенства 9х + 1 > 7х.
Решите неравенство и изобразите множество его решений на координатной прямой:
Задание № 36.4. а) х + 1 > 0; б) х – 3 ≤ 0; в) х + 2,5 < 0; г) х – 7 ≥ 0.
Задание № 36.5. а) 2х ≥ 8; б) 4х < 12; в) 5х > 25; г) 7х ≤ 42.
Задание № 36.6. а) 11x > –33; б) –8x ≥ 24; в) –6х > –12; г) 13х ≤ –65.
Задание № 36.7. а) 3х + 2 > 0; б) –5х – 1 ≤ 0; в) 4х – 5 < 0; г) –6х + 12 ≥ 0.
Задание № 36.8. а) 2х + 3 ≥ 7; б) –3х + 4 < 13; в) –5х – 1 > 24; г) –х – 8 ≤ 19.
Задание № 36.9. а) 5(х + 2) ≥ 4; б) –2(х – 3) ≤ 5; в) 6(х – 1) ≤ 11; г) –3(х + 4) ≥ –2.
Задание № 36.10. а) При каких значениях а двучлен 5а – 3 принимает положительные значения?
б) При каких значениях b двучлен 23b + 11 принимает отрицательные значения?
Задание № 36.11. а) При каких значениях с двучлен 13с – 22 принимает неотрицательные значения?
б) При каких значениях d двучлен 2d + 4 принимает неположительные значения?
Задание № 36.12. а) При каких значениях m двучлен 5m + 8 принимает значения большие чем 2?
б) При каких значениях n двучлен 7n + 1 принимает значения меньшие чем 1?
Задание № 36.13. а) При каких значениях р значения двучлена 9р – 2 не меньше значений двучлена 3р + 4?
б) При каких значениях q значения двучлена 11q + 3 меньше значений двучлена 5q – 6?
Решите неравенство:
Задание № 36.14. а) 2а – 11 > а + 13; б) 8b + 3 < 9b – 2; в) 6 – 4с > 7 – 6с; г) 3 – 2х < 12 – 5х.
Задание № 36.15.
Задание № 36.16.
Задание № 36.17.
Задание № 36.18.
Задание № 36.19.
Задание № 36.20.
Задание № 36.21.
Задание № 36.22.
Задание № 36.23.
Задание № 36.24.
Задание № 36.25. а) При каких значениях переменной произведение выражений 3х + 8 и х + 12 больше утроенного квадрата второго множителя?
б) При каких значениях переменной произведение выражений 2х + 5 и 8х – 15 меньше квадрата выражения 4х – 3?
Задание № 36.26.
Задание № 36.27.
Задание № 36.28.
Задание № 36.29.
Задание № 36.30.
Задание № 36.31.
Задание № 36.32.
Задание № 36.33.
Задание № 36.34. Прежде чем разбить лагерь на берегу реки, туристы проплыли по реке и ее притоку 10 км, причем часть пути они проплыли по течению, часть – против течения. Определите, какое расстояние проплыли туристы по течению, если известно, что в пути они были менее двух часов, собственная скорость лодки равна 5 км/ч, а скорость течения реки и ее притока равна 1 км/ч.
Задание № 36.35. Дачники прошли от поселка до станции расстояние 10 км. Сначала они шли со скоростью 4 км/ч, а затем увеличили скорость на 2 км/ч. Какое расстояние они могли пройти со скоростью 4 км/ч, чтобы успеть на поезд, который отправляется со станции через 2 ч после их выхода из поселка?
Задание № 36.36. Чтобы попасть из поселка А в поселок В, нужно доехать по шоссе до пункта С, а затем свернуть на проселочную дорогу. Путь от А до С на 15 км длиннее, чем путь от С до В. Скорость мотоциклиста на шоссе равна 50 км/ч, а на проселочной дороге 40 км/ч, причем на весь путь от А до В он тратит менее трех часов. Чему равно расстояние от А до С, если известно, что оно выражается целым числом десятков километров?
Задание № 36.37. Из города А в город В, находящийся на расстоянии 240 км от А, выехал автобус со скоростью 54 км/ч. Через некоторое время вслед за ним выехал автомобиль со скоростью 90 км/ч. Прибыв в В, автомобиль тотчас повернул обратно. На каком расстоянии от А автобус встретился с автомобилем?
Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2021). ГЛАВА 5. НЕРАВЕНСТВА. § 36. Решение линейных неравенств. ОТВЕТЫ на задачи 36.1 — 36.37. Вернуться в ОГЛАВЛЕНИЕ.
Просмотров: 51 185
Контрольная работа № 7«Числовые неравенства и их свойства»
Содержание (быстрый переход):
Общая характеристика контрольной работы
Контрольная работа составлена в 6 вариантах различной сложности (варианты 1, 2 самые простые, варианты 3, 4 сложнее и варианты 5, 6 самые сложные). При этом сложность вариантов нарастает не очень резко. Каждый вариант содержит 6 задач примерно одинаковой сложности (может быть, несколько сложнее две последние задачи).
При проверке вариантов 1, 2 оценка «5» ставится за правильное решение пяти задач, оценка «4» — четырех задач и оценка «3» — трех задач. Одна задача является резервной (или запасной) и дает некоторую свободу выбора учащимся. При таких же критериях оценки за решение задач вариантов 3, 4 дается дополнительно 0,5 балла, вариантов 5, 6 — 1 балл (т. е. оценку «5» можно получить за правильное решение четырех задач).
I уровень сложности. Варианты 1 и 2
- Сравните значения числовых выражений А = 1/2 + 1/6 – 2/3 и В = 3/4 • (–1 1/3).
- Известно, что а > b. Расположите в порядке возрастания числа а + 11, b – 5, а + 2, b – 8, b – 3.
- Докажите неравенство (х + 2)2 ≥ 8х.
- Докажите неравенство 3×2 – 6х + 5 > 0.
- Для числа а выполнено неравенство 4 < а < 5. Оцените значение выражения 2а – 7.
- Известны границы длин основания а и боковой стороны b равнобедренного треугольника (в мм): 24 ≤ а ≤ 26 и 32 ≤ b ≤ 34. Оцените периметр треугольника.
- Сравните значения числовых выражений А = 1/3 + 1/4 – 1/2 и В = 2/7 • (–3,5).
- Известно, что а < b. Расположите в порядке убывания числа а – 3, а – 8, b + 17, b + 3, b + 9.
- Докажите неравенство (x – 3)2 ≥ –12x.
- Докажите неравенство 3×2 + 12х + 13 > 0.
- Для числа а выполнено неравенство 3 < а < 4. Оцените значение выражения 4а – 9.
- Известны границы длин основания а и боковой стороны b равнобедренного треугольника (в мм): 37 ≤ а ≤ 38 и 42 ≤ b ≤ 44. Оцените периметр треугольника.
II уровень сложности. Варианты 3 и 4
- Сравните значения числовых выражений
А = 1/2 + 1/3 + 1/4 + … + 1/99 и В = 1/3 + 1/4 + 1/5 + … + 1/100. - Известно, что для чисел а, b, с, d выполнены неравенства d > b, с < а, b > а. Расположите числа a, b, с, d в порядке убывания.
- Докажите неравенство (а + 5)(а – 2) > (а – 5)(а + 8).
- Докажите неравенство а2 – а ≤ 50а2 – 15а + 1.
- Для чисел а и b выполнены неравенства 7 ≤ а ≤ 8 и 6 ≤ b ≤ 20. Оцените значения выражения 3а – 2b.
- Найдите наименьшее значение выражения А = х + 9/х + 5 (для х > 0).
- Сравните значения числовых выражений А = 1/5 + 1/6 + 1/7 + … + 1/100 и В = 1/4 + 1/5 + 1/6 + … + 1/99.
- Известно, что для чисел a, b, с, d выполнены неравенства а > с, d < a, b > d. Расположите числа a, b, с, d в порядке убывания.
- Докажите неравенство (а + 4)(а – 1) > (а – 7)(а + 10).
- Докажите неравенство а2 + а ≤ 65а2 – 15а + 1.
- Для чисел а и b выполнены неравенства 8 ≤ а ≤ 10 и 7 ≤ b ≤ 13. Оцените значения выражения 2а – 3b.
- Найдите наименьшее значение выражения А = х + 16/х + 7 (для х > 0).
III уровень сложности. Варианты 5 и 6
- Сравните значения числовых выражений А = √19 + √21 и В = 2√20.
- Расположите в порядке возрастания числа За, a√5, –2а, а(√3 – 1), а(√2 – 2), 2а, если а — положительное число.
- Докажите неравенство 2х2 + у2 + 4х – 4у + 7 > 0.
- Для чисел а и b выполнены неравенства 3 ≤ a ≤ 4 и 4 ≤ b ≤ 5. Оцените значения выражения 7а – 20/b.
- К числителю и знаменателю правильной дроби m/n (где m и n — натуральные числа, m < n) прибавили число 2. Увеличится или уменьшится дробь?
- Найдите наименьшее значение функции у = (2х4 + 7×2 + 32)/x2.
- Сравните значения числовых выражений А = 2√22 и В = √21 + √23.
- Расположите в порядке убывания числа (√5 – 2)а, –7а, 4а, а(√3 – √2), –а√3, 2а, если а — положительное число.
- Докажите неравенство x2 + 2у2 – 2х + 8у + 10 > 0.
- Для чисел а и b выполнены неравенства 5 ≤ а ≤ 6 и 2 ≤ b ≤ 5. Оцените значения выражения 6а – 10/b.
- Из числителя и знаменателя правильной дроби m/n (где m и n — натуральные числа, m < n) вычли число 1. Увеличится или уменьшится дробь?
- Найдите наименьшее значение функции у = (3х4 + 5×2 +12)/x2.
ОТВЕТЫ на контрольную работу.
Варианты 1-4
Вариант 1№ 1. А > В.№ 2. b – 8, b – 5, b – 3, а + 2, а + 11.№ 5. 1 < 2а – 7 < 3.№ 6. 88 ≤ Р ≤ 94.
Вариант 2№ 1. А > В.№ 2. b + 17, b + 9, b + 3, а – 3, а – 8.№ 5. 3 < 4а – 9 < 7.№ 6. 121 ≤ Р ≤ 126.
Вариант 3№ 1. А > В.№ 2. с, а, b, d.№ 5. –19 ≤ За – 2b ≤ 12.№ 6. А = 11.
Вариант 4№ 1. А < В.№ 2. b, d, а, с.№ 5. –23 ≤ 2а – 3b ≤ –1.№ 6. А = 15.
ОТВЕТЫ и РЕШЕНИЯ на контрольную работу. Варианты 5-6
Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). ГЛАВА IV. НЕРАВЕНСТВА. § 10. Числовые неравенства и их свойства (8 ч). Урок 72. Алгебра 8 Макарычев Контрольная 7 + ОТВЕТЫ и РЕШЕНИЯ.
Смотреть Список всех контрольных по алгебре в 8 классе по УМК Макарычев
Вернуться к Списку уроков Тематического планирования в 8 классе.