Как разложить на множители квадратный трёхчлен
Квадратный трёхчлен — это многочлен вида ax2 + bx + c.
В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:
ax2 + bx + c = 0
Левая часть этого уравнения является квадратным трёхчленом.
Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.
Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:
a(x − x1)(x − x2)
Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:
ax2 + bx + c = a(x − x1)(x − x2)
Где левая часть — исходный квадратный трёхчлен.
Пример 1. Разложить на множители следующий квадратный трёхчлен:
x2 − 8x + 12
Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:
x2 − 8x + 12 = 0
В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:
Итак, x1 = 6, x2 = 2. Теперь воспользуемся формулой:
ax2 + bx + c = a(x − x1)(x − x2)
В левой части вместо выражения ax2 + bx + c напишем свой квадратный трёхчлен x2 − 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2
x2 − 8x + 12 = 1(x − 6)(x − 2) = (x − 6)(x − 2)
Если a равно единице (как в данном примере), то решение можно записать покороче:
x2 − 8x + 12 = (x − 6)(x − 2)
Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.
Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2). Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x2 − 8x + 12
(x − 6)(x − 2) = x2 − 6x − 2x + 12 = x2 − 8x + 12
Пример 2. Разложить на множители следующий квадратный трёхчлен:
2×2 − 14x + 24
Приравняем данный квадратный трёхчлен к нулю и решим уравнение:
2×2 − 14x + 24 = 0
Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:
Итак, x1 = 4, x2 = 3. Приравняем квадратный трехчлен 2×2 − 14x + 24 к выражению a(x − x1)(x − x2), где вместо переменных a, x1 и x2 подстáвим соответствующие значения. В данном случае a = 2
2×2 − 14x + 24 = 2(x − 4)(x − 3)
Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2×2 − 14x + 24
2(x − 4)(x − 3) = 2(x2 − 4x −3x + 12) = 2(x2 − 7x + 12) = 2×2 − 14x + 24
Что такое разложение числа на множители?
Любое натуральное число можно представить в виде
произведения простых чисел. Это представление называется разложением
числа на простые множители.
Натуральное число называется делителем целого числа если для подходящего целого числа верно
равенство . В этом случае говорят, что делится на или что число кратно
числу .
Простым числом называют натуральное число , делящееся только на себя и на единицу. Составным
числом называют число, имеющее больше двух различных делителей (любое натуральное число не равное
имеет как минимум два делителя: и ). Например, числа – простые, а числа – составные.
Основная теорема арифметики. Любое натуральное число большее единицы, можно
разложить в произведение простых чисел, причём это разложение единственно с точностью до порядка следования
сомножителей.
Как разложить число на множители?
В школе на уроках математики разложение числа на множители обычно записывают столбиком в две колонки. Делается это
так: в левую колонку выписываем исходное число, затем
- Берём самое маленькое простое число — 2 и по признакам
делимости или обычным делением проверяем, делится ли исходное число на 2. - Если делится, то в правую колонку выписываем 2. Далее делим исходное число на 2 и записываем результат в левую
колонку под исходным числом. - Если не делится, то берём следующее простое число — 3.
Повторяем эти шаги, при этом работаем уже с последним числом в левой колонке и с текущим простым числом. Разложение
заканчивается, когда в левой колонке будет записано число 1.
Чтобы лучше понять алгоритм, разберём несколько примеров.
Пример. Разложить на множители число 84.
Решение. Записываем число 84 в левую колонку:
84
Берём первое простое число — два и проверяем, делится ли 84 на 2. Так как 84 оканчивается на 4, а 4 делится на 2,
то и 84 делится на 2 по признаку делимости. Записываем 2 в
правую колонку. 84:2 = 42, число 42 записываем в левую колонку. Получили вот что:
8442
2
Теперь работаем уже с числом 42. Число 42 делится на 2, поэтому записываем 2 в правую колонку, 42:2 = 21, число
21 записываем в левую колонку.
844221
22
Число 21 на 2 не делится, поэтому проверяем его делимость на следующее простое число — 3. Число 21 делится на 3,
21:3 = 7. Записали 3 в правую колонку, 7 — в левую. Получили
8442217
223
Число 7 — простое число, поэтому в правой колонке записываем 7, в левую пишем 1. В итоге получили:
84422171
2237
Всё, число разложено!
В результате в правой колонке оказались записаны все простые множители числа 84. То есть 84=2∙2∙3∙7.