Сложение и вычитание положительных и отрицательных чисел

Как решать примеры на сложение с модулями. положительные и отрицательные числа, определение, примеры

Действие вычитание. Знак-

Название компонентов действия вычитания

Давай продолжим раскрывать тайны науки математики

Ведь есть еще одно очень важное математическое действие, с которым нам обязательно нужно познакомиться

Итак, гномики закончили свою работу и возвращаются домой.

Дома их ждет Белоснежка. 

Она приготовила для гномиков угощение – испекла пирожные. Посчитай, сколько их получилось.

У тебя тоже получилось девять пирожных? Значит, ты посчитал правильно!

Когда гномики пришли домой, каждый из них съел по пирожному. Помнишь, сколько было гномов у Белоснежки? Точно, семь. Они съели столько же пирожных, т.е. тоже семь.

Давай зачеркнем съеденные пирожные.

Мы видим, что осталось совсем мало – всего два пирожных. Наверное, они достанутся Белоснежке.

В математике действие, которое ведет к уменьшению количества предметов, называется вычитание. Его смысл в следующем. Из целого множества удаляется его часть. В итоге остается меньше элементов, чем их было в целом множестве.

Чтобы узнать результат действия вычитания, нужно пересчитать элементы, которые остались.

Давай подумаем, в каких случаях предметов станет меньше. Пирожных стало меньше, потому что гномики съели часть из них. Еще могут быть такие ситуации:

  • отдали;
  • забрали;
  • улетели (ушли, уехали);
  • продали;
  • использовали;
  • сломали.

Для того, чтобы записать действие вычитания в виде математического выражения используют специальный знак. Знак вычитания выглядит так.

Он называется «минус».

В тетради знак «минус» пишется так.

Порядок написания знака «минус» следующий.

  1. Ставим ручку чуть правее середины левой границы клетки.
  2. Ведем горизонтальную прямую линию вправо.
  3. Останавливаемся, немного не доходя до середины правой границы клетки.

Потренируйся писать знак «минус» в тетради.

А теперь я расскажу, как составлять математическое выражение, которое описывает действие вычитание.

Вспомни, сколько пирожных было сначала?

Правильно, 9. Запиши.

9

Гномики съели пирожные и их стало меньше, поэтому ставим знак «минус».

9 –

Они съели 7 пирожных. Запишем это число.

9 – 7

Ставим знак равенства и запишем количество пирожных, которые остались. Их оставалось 2.

9 – 7 = 2

В тетради запись выглядит так.

Названия компонентов действия вычитания запомнить довольно легко.

  1. Первое число в результате вычитания станет меньше. Поэтому его называют уменьшаемое.
  2. Второе число показывает, сколько надо вычесть. Значит оно вычитаемое.
  3. В результате мы определяем какая разница между тем, что было и тем, что осталось. Поэтому результат действия вычитания называется разность.

Левая сторона этого выражения тоже называется разность.

Если в задании говорится, что нужно «найти разность чисел», значит, следует составить математическое выражение с действием вычитания.

Такое выражение можно прочитать по-разному.

  1. Из девяти вычесть семь будет два.
  2. Девять минус семь получим два.
  3. Уменьшаемое девять, вычитаемое семь, разность два.
  4. Разность чисел девять и семь равна двум.

Закрепим все, что ты узнал о действии вычитания и составим математическое выражение по такой картинке.

Посмотри, сколько всего было шариков у гномика сначала? Запиши.

Правильно, пять.

Что случилось с некоторыми шариками? Сколько таких шаров?

Верно, два шарика сдулись и у гномика шариков осталось меньше. Значит нужно написать «минус два».

5 – 2

Ставим знак равенства и пересчитаем, сколько осталось целых шариков.

Их три.

5 – 2 = 3

Вот мы и составили выражение.

А теперь разберемся, как нужно решать примеры на вычитание. Например, посчитаем, сколько будет:

6 — 4

Назови уменьшаемое. Выложи столько же кружочков. Их должно быть 6.

Теперь назови вычитаемое. Убери (отодвинь, зачеркни) четыре кружочка.

Пересчитай кружочки, которые остались, и ты узнаешь ответ. Запиши его после знака равенства.

6 – 4 = 2

Мы решили пример на вычитание. Теперь ты знаешь, что обозначает это математическое действие, как называются компоненты вычитания, и как нужно составлять и решать математические выражения с действием вычитания.

Как вычитать отрицательные и положительные числа

Для нахождения разности противоположных чисел, надо к уменьшаемому прибавить вычитаемое с противоположным знаком, то есть заменить разность суммой.

Наглядно данное действие лучше представить в виде формулы:

a — b = a + (-b)

То есть любое выражение, содержащее знаки сложения и вычитания, следует решать как сумму чисел.

Примеры:

-20 — 14 = -20 + (-14) = -34;

-6,1 + 5,6 = 5,6 + (-6,3) = 0,5.

Разность выражения будет положительной, если уменьшаемое больше вычитаемого, и отрицательной, если значение модуля уменьшаемого меньше вычитаемого. В случае, когда уменьшаемое и вычитаемое одинаковые, их разность будет равна нулю.

Примеры:

  • 15 — 6 = 15 + (-6) = 9 — уменьшаемое 15, больше вычитаемого, поэтому ответ положительный;

  •  -15 — 6 = -15 + (-6) = -21 — уменьшаемое -15, меньше вычитаемого, следовательно, ответ отрицательный. 

Если нужно отнять отрицательное число, то два знака «минус» подряд дают знак «плюс».

Пример:

10 — (-5) = 10 + 5 = 15;

— 10 — (-5) = -10 + 5 = 5 — 10 = -5.

Все вышеперечисленные действия возможно выполнить на калькуляторе. Для этого достаточно ввести сначала модуль числа, потом нажать кнопку изменения знака «+/-».

Например, чтобы задать число -81,73, надо в следующем порядке нажать кнопки: «8», «1», «,», «7». «3», «+/-». А решать пример с отрицательными числами следует в том же порядке, что и с положительными. 

Указания по использованию

Чтобы использовать калькулятор для сложения и вычитания целых и десятичных чисел, введите заданное уравнение и нажмите «Вычислить». Калькулятор вернет окончательный ответ, а также пошаговый алгоритм решения с указанием конечного знака для каждой операции.
Поле ввода принимает следующие символы:

  • Целые числа, например, 3, 6, 144, -15.
  • Десятичные числа, где целая часть числа и десятичная часть разделены десятичной точкой (или запятой). Например, 3,0 , 8,978 , 123,901 , -12,36.
  • Знак операции сложения +.
  • Знак операции вычитания -.
  • Скобки, (). Скобки, или круглые скобки, всегда должны идти парами, то есть уравнение должно содержать как открывающую, так и закрывающую скобку. Например, 3 + (-4), -98 — (-5,67). Вы не можете ввести 5 + (-3, так как это уравнение содержит только одну скобку. Символы, заключенные в скобки, всегда должны заканчиваться числом, а не знаком операции. Например, (3 — 4 + 5) является допустимым вводом, а (3 — 4 +) 5 — нет. Можно также использовать квадратные скобки, [], или фигурные скобки, {}, но калькулятор автоматически преобразует их в круглые скобки, ().

Вы можете использовать столько последовательных знаков операций, сколько необходимо, не разделяя их пробелами или другими символами. Для каждой операции калькулятор определит и продемонстрирует последний знак операции. Ниже приведены примеры правильного ввода:

  • -33 + 15 — 1- — 2 (равно -17)
  • (-33) + 15 — 1 — (-2) (равно -17)
  • (-33 + 15 -1) — — 2 (равно -17)
  • -33 + 15 — 1- — — — — — + 2 (равно -21)

Поле ввода принимает до 60 символов.

Чтобы очистить поле ввода, нажмите «Очистить».

Вычитание отрицательных чисел и чисел с разными знаками

Мы уже знаем, как выполнять сложение и вычитание положительных и отрицательных чисел, но хочется сказать, что именно в этом разделе математики, большую роль играют противоположные числа. Для тех, кто забыл, напоминаем, какие числовые значения называются противоположными:

Если два числа отличаются только знаком, то они являются противоположными:-13 и 13, 141 и -141, 1000 и -1000.

Чтобы понять, какие правила необходимо соблюдать при выполнении вычитания чисел с разными знаками, давайте разберем задание.

Определите, чему будет равно значение выражения: от -510 отнять +210.

На первый взгляд задание очень простое и не вызывает никаких проблем. Но стоит записать разность в виде выражения:

-510-(+210)

Сразу возникает вопрос «Как вычитать, если уменьшаемое со знаком «минус», а вычитаемое со знаком «плюс»?».Чтобы решение подобных выражений не вызывало у вас трудностей, возьмите на заметку правило:

Чтобы выполнить вычитание чисел с разными знаками, нужно уменьшаемое оставить без изменений и прибавить к нему число, противоположное вычитаемому.

Например: -5-(+2).

Минус пять оставляем без изменений. Вычитаемое +2, а противоположное ему -2. Складываем уменьшаемое(-5) и число противоположное вычитаемому(-2): -5+(-2).

По правилу сложения отрицательных чисел, складываем модули(5+2) и ставим знак «-»:

-5+(-2)=-(5+2)=-7

Учитывая данное правило, получается, что к уменьшаемому(-510) необходимо прибавить значение,противоположное вычитаемому(210), таким числом будет -210:

Запишем выражение:

-510-(+210)=-510+(-210). Чтобы вычислить полученное выражение нужно сложить отрицательные значения, согласно правилу сложения отрицательных чисел:

-510-(+210)=-510+(-210)=-(510+210)=-720.

Вычисления окончены.

Рассмотрим следующее задание.

Найдите значение выражения: -248+248.

Используем правило сложения значений с разными знаками.

-248=|248|;

248=|248|;

248 – 248=0.

Следовательно, при сложении противоположных числовых значений в результате всегда будет 0.

Зная правило вычитания отрицательных чисел, можем сделать вывод, что знаки, стоящие перед скобками, могут менять знак числа, находящегося в скобках.

К примеру, в выражении 19-(-4), при вычислении используем правило, согласно которого, к уменьшаемому прибавляем, число противоположное вычитаемому, то есть знак вычитаемого «-» меняем на противоположный «+». Получим:

Запомни! Если перед скобкой в математическом выражении стоит знак «минус», то знак числа в скобках меняется на противоположный.

Ну а сейчас, разберем задание, в котором перед скобкой стоит знак «плюс».

Вычисли: -36+(-7).

В этом задании воспользуемся правилом сложения отрицательных чисел– сложим модули числовых значений, а перед суммой поставим знак «минус»:

Мы видим, что «плюс» перед скобкой никак не повлиял на знак числа, стоящего в скобках. Запомни! Если перед скобками стоит «плюс», то знак числового значения, стоящего в скобках никак не меняется.

В выполнении рассматриваемых действий нет ничего сложного. Главное запомнить основные требования и придерживаться их в процессе любых вычислений! Если сразу запомнить все правила не получается, заходи на сайт 100уроков.ru и мы всегда с удовольствием напомним нужное правило или алгоритм.

Минутка истории

История математики утверждает, что человечество длительное время не принимало ряд отрицательных числовых значений. Данный вид чисел, казался непонятным и ненужным. Привычных нам знаков «плюс» и «минус» просто не существовало. Если возникала необходимость в записи отрицательно числа, то его записывали следующим образом «долг в 30 монет». И лишь математики Древней Индии и Китая, выполняли записи отрицательных чисел без употребления слова «долг», а просто использовали черные чернила, вместо синих.

Только в 3 веке греческий ученый Диофант, стал обозначать знак «минус» вот таким символом   .

Привычные нам знаки «+» и «-» появились в Германии в конце 15 века. Чешский ученый Ян Видман, отразил данные знаки в своей книге-пособии, помогающей подсчитывать прибыль и убытки чешским купцам. Стоит заметить, что данная книга была написана от руки и имела огромную популярность среди богатых людей того времени.

Отрицательные числа

Отрицательные числа – это всего лишь числа, которые находятся слева от точки ноль на числовой прямой. Вот и все определение. Его нетрудно запомнить, но трудно понять. Ведь в реальной жизни отрицательных чисел практически нет: нельзя себе представить – 2 яблока или – 3 ручки. Можно понять, что такое реальное число, что такое отсутствие чисел, но что такое отрицательные числа понять куда труднее.

На самом деле можно представить себе любое отрицательное число, как недостаток до нуля. Например, – 3 значит, что при вычитании уменьшаемому не хватило трех единиц, чтобы выйти в ноль. Чаще всего это встречается в бухгалтерских отчетах и финансовых сводках.

Сложение чисел с разными знаками

Если для решения задачи нам требуется прибавить к некоторому числу «а» отрицательное число «-b», то действовать нужно следующим образом.

  • Возьмем модули обоих чисел — |a| и |b| — и сравним эти абсолютные значения между собой.
  • Отметим, какой из модулей больше, а какой меньше, и вычтем из большего значения меньшее.
  • Поставим перед получившимся числом знак того числа, модуль которого больше.

Это и будет ответом. Можно выразиться проще: если в выражении a + (-b) модуль числа «b» больше, чем модуль «а», то мы отнимаем «а» из «b» и ставим «минус» перед результатом. Если больше модуль «а», то «b» вычитается из «а» — а решение получается со знаком «плюс».

Бывает и так, что модули оказываются равны. Если так, то на этом месте можно остановиться — речь идет о противоположных числах, и их сумма всегда будет равна нулю.

Примеры сложения и вычитания целых чисел

Первое чему следует научиться это складывать и вычитать целые числа с помощью координатной прямой. Совсем необязательно рисовать координатную прямую. Достаточно воображать её в своих мыслях и видеть, где располагаются отрицательные числа и где положительные.

Рассмотрим следующее простейшее выражение

1 + 3

Значение данного выражения равно 4

1 + 3 = 4

Этот пример можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1, нужно сдвинуться вправо на три шага. В результате мы окажемся в точке, где располагается число 4. На рисунке можно увидеть, как это происходит:

Знак плюса в выражении 1 + 3 указывает нам, что нужно двигаться вправо в сторону увеличения чисел.

Пример 2. Найдём значение выражения 1 − 3

Значение данного выражения равно −2

1 − 3 = −2

Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −2. На рисунке можно увидеть, как это происходит:

Знак минуса в выражении 1 − 3 указывает нам, что нужно двигаться влево в сторону уменьшения чисел.

Вообще, если осуществляется сложение, то нужно двигаться вправо в сторону увеличения. Если же осуществляется вычитание, то нужно двигаться влево в сторону уменьшения.

Пример 3. Найти значение выражения −2 + 4

Значение данного выражения равно 2

−2 + 4 = 2

Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на четыре шага. В результате мы окажемся в точке, где располагается положительное число 2

Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на четыре шага, и оказались в точке, где располагается положительное число 2.

Пример 4. Найти значение выражения −1 − 3

Значение данного выражения равно −4

−1 − 3 = −4

Этот пример опять же можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −4

Видно, что мы сдвинулись из точки где располагается отрицательное число −1 в левую сторону на три шага, и оказались в точке, где располагается отрицательное число −4.

Пример 5. Найти значение выражения −2 + 2

Значение данного выражения равно 0

−2 + 2 = 0

Этот пример можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на два шага. В результате мы окажемся в точке, где располагается число 0

Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на два шага и оказались в точке, где располагается число 0.

Примеры задач с решением

Задача 1

Задача

Нужно решить: (+3) + (+4)

Решение:

(+3) + (+4) = +7

Ответ: 7

Задача 2

Задача

Требуется решить: (-4) + (-3)

Решение:

(-4) + (-3) = -7

Ответ: -7

Задача 3

Задача

Необходимо выполнить сложение: (+15) + (-7)

Решение:

(+15) + (-7) = 15 — 7 = 8

Ответ: 8

Задача 4

Задача

Нужно выполнить вычитание: (+7) — (+4)

Решение:

(+7) — (+4) = +3

Ответ: 3

Задача 5

Задача

Требуется найти разность чисел: -17 — (-14)

Решение:

-17 — (-14) = -17 + 14 = -3

Ответ: -3

Задача 6

Задача

Необходимо решить пример: (+5) ⋅ (-8)

Решение:

(+5) ⋅ (-8) = -40

Ответ: -40

Задача 7

Задача

Нужно найти произведение двух чисел: -9 ⋅ (-9)

Решение:

-9 ⋅ (-9) = 81

Ответ: 81

Задача 8

Задача

Требуется решить пример: -6 ⋅ 5

Решение:

-6 ⋅ 5 = -30

Ответ: -30

Задача 9

Задача

Нужно выполнить деление двух чисел: 40 : (-8)

Решение:

40 : (-8) = -5

Ответ: -5

Задача 10

Задача

Требуется найти разность: (-6) — (+6) — (-8)

Решение:

(-6) — (+6) — (-8) = -12 — (-8) = -12 + 8 = -4

Ответ: -4

Задача 11

Задача

Необходимо решить пример:  (-5) ⋅ (-4) + (+3) ⋅ (-2)

Решение:

(-5) ⋅ (-4) + (+3) ⋅ (-2) = 20 + (-6) = 14

Ответ: 14

Задача 12

Задача

Нужно найти ответ: (-15) ⋅ : (+5)

Решение:

(-15) ⋅ : (+5) = -15 ⋅ (-18) : 5 = (-15 : 5) ⋅ (-18) = -3 ⋅ (-18) = 54

Ответ: 54

Задача 13

Задача

Требуется выполнить деление: -18 :

Решение:

-18 : = -18 : = -18 : (-20 + 26) = -18 : 6 = -3

Ответ: -3

Задача 14

Задача

Нужно найти значение выражения:

(−1)−(−512)⋅(+411)=(−1)−(−521)⋅(+114)

Решение:

(−1)−(−512)⋅411=−1−(−112)⋅411=(−1)−(−521)⋅114=−1−(−211)⋅114=−1−(−2)=−1+2=1−1−(−2)=−1+2=1

Ответ: 1

Задача 15

Задача

Необходимо вычислить:

Вычислить |a| — |b| + |c|

при a = -8, b = -5, c = 1

Решение:

|-8| — |-5| + |1| = 8 — 5 + 1 = 4

Ответ: 4

Задача 16

Задача

Требуется решить пример:

:45=:54

Решение:

:45=:54=

:45=:54= (2,4−0,18−0,22):25=

2:45=52=2,5(2,4−0,18−0,22):52=2:54=25=2,5

Ответ: 2,5

Дробные числа

Обыкновенные дроби

Знакомство с обыкновенными дробями

Дано начальное представление об обыкновенных дробях: смысл, терминология, форма записи и т.п.

Основное свойство дроби

Сформулировано и доказано основное свойство дроби, которое применяется при сокращении дробей и их приведении к новому знаменателю.

Сократимые и несократимые дроби

Познакомьтесь с определениями сократимых и несократимых дробей, научитесь определять сократима ли данная обыкновенная дробь.

Сокращение дробей

Узнайте что за действие называют сокращением дробей и по каким правилам выполняется сокращение, рассмотрите готовые решения примеров.

Приведение дробей к новому знаменателю

Разобраны правила и решения примеров приведения дробей к новому знаменателю.

Приведение дробей к общему знаменателю

Научитесь находить дополнительные множители и приводить дроби к наименьшему общему знаменателю, это пригодится при выполнении действий с обыкновенными дробями.

Сложение обыкновенных дробей

Разобраны правила сложения дробей с одинаковыми и разными знаменателями, приведены подробные решения характерных примеров.

Вычитание дробей, правила, примеры, решения

Показано применение правил вычитания дробей при решении примеров.

Умножение обыкновенных дробей

Узнайте правило умножения обыкновенных дробей и научитесь применять его на практике при решении примеров.

Взаимно обратные числа

Дано определение взаимно обратных чисел, показано как найти число обратное данному.

Деление дробей, правило, примеры, решения

Научитесь делить обыкновенные дроби, переходя к умножению на обратную дробь, в этой статье приведено правило деления и разобраны решения примеров.

Сравнение дробей, правила, примеры, решения

Узнайте как сравнить дроби с одинаковыми и разными знаменателями, с одинаковыми числителями и как сравнить дробь с натуральным числом.

Смешанные числа (смешанные дроби)

Смешанные числа

Дано определение смешанного числа, показана связь между смешанными числами и обыкновенными дробями.

Сложение смешанных чисел, правила, примеры

Познакомьтесь с правилами сложения смешанных чисел, разберитесь с представленными решениями примеров.

Правила и примеры вычитания смешанных чисел

Научитесь вычитать смешанные числа, для этого изучите правила выполнения этого действия и рассмотрите примеры с готовыми решениями.

Умножение смешанных чисел

Следующее действие со смешанными числами это их умножение, изучите соответствующие правила, рассмотрете решения характерных примеров.

Деление смешанных чисел, правила, примеры, решения

Приведено правило, позволяющее делить смешанные числа, показаны решения примеров.

Сравнение смешанных чисел

Научитесь сравнивать смешанные числа, для этого приведены правила сравнения и показаны примеры с доступно изложенными решениями.

Десятичные дроби

Начальная информация о десятичных дробях

Познакомьтесь с десятичными дробями: что это такое, каков их смысл, как они записываются и т.п.

Перевод десятичной дроби в обыкновенную и обратно

Узнайте как перевести десятичную дробь в обыкновенную или наоборот.

Сложение десятичных дробей, правила, примеры

Научитесь складывать десятичные дроби в том числе столбиком, обратите внимание на представленные решения характерных примеров.

Правила и примеры вычитания десятичных дробей

Познакомьтесь с вычитанием десятичных дробей, рассмотрите принципы этого действия и алгоритм вычитания столбиком.

Умножение десятичных дробей

Уясните правила, по которым умножаются десятичные дроби, рассмотрите примеры умножения десятичных дробей в столбик.

Деление десятичных дробей

Рассмотрите правило, позволяющее перейти от деления десятичных дробей к делению натуральных чисел, разберитесь в представленных решениях примеров.

Сравнение десятичных дробей, правила, примеры, решения

Изучите принцип сравнения десятичных дробей, разберите правила сравнения конечных и бесконечных десятичных дробей.

Какие числа называются положительными и отрицательными

Отрицательными числами в алгебре являются числа со знаком минус (-). Например, к таким числам относят -1, -2, -3. Прочитать запись можно, как минус один, минус два, минус три.

Отрицательное число — это какое-либо число меньше нуля, перед которым ставится знак минус.

Положительные числа — числа, состоящее в множестве положительных чисел, являются числами без знака минус в обозначении и не являются нулем.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

В системе отрицательных чисел так же, как и среди положительных есть дроби: обыкновенные и десятичные, целые числа, корни и так далее. Почти все подвиды чисел, которые встречаются среди положительных чисел, есть и среди отрицательных. Стоит отметить, что, согласно понятию, число 0 не является ни положительным, ни отрицательным числом.

Положительные числа — это числа, соответствующие точкам в той части координатной прямой, которая лежит с правой стороны относительно начала отсчета.

Отрицательные числа — являются числами, соотносящимися с точками в части координатной прямой, которая расположена с левой стороны относительно начала отсчета (нуля).

Наглядным примером использования отрицательных чисел является термометр. Прибор демонстрирует температуру тела, воздуха, почвы, воды. Зимой при холодной погоде температура воздуха снижается до отрицательных значений. К примеру, -10 градусов мороза:

Обычные числа, в том числе, 1, 2, 3 называют положительными. Данные числа имеют знак (+). Обычно, его не записывают.

Координатная прямая — является прямой линией, на которой размещены все числа, включая отрицательные и положительные.

Координатная прямая имеет следующий вид:

В данном случае отмечены только числа от −5 до 5. В действительности координатная прямая бесконечна. На изображении можно увидеть только фрагмент этой прямой. Для того чтобы отметить на координатной прямой числа, использую точки. Началом отсчета является нуль. С левой стороны от нуля отмечают отрицательные числа, а с правой — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом   \(\infty\). Отрицательное направление будет обозначаться символом −\(\infty\), а положительное — символом +\(\infty\). Таким образом, координатная прямая содержит все числа от минус бесконечности до плюс бесконечности:

\((−\infty; +\infty)\)

Каждая точка на координатной прямой обладает определенным именем и координатой. Именем является какая-либо латинская буква. Координата представляет собой число, указывающее на положение точки на прямой. Таким образом, координатой является то число, которое требуется отметить на координатной прямой. К примеру, точка А(2) читается, как «точка А с координатой 2» и обозначается на координатной прямой таким образом:

При рассмотрении изображения координатной прямой можно заметить, что отрицательные числа лежат левее относительно начала отсчета, а положительные числа — правее. С каждым шагом в левую сторону число будет уменьшаться в меньшую сторону. При каждом шаге в правом направлении число будет увеличиваться.

Вычитание отрицательных чисел — что означает

Отрицательное число является элементом множества, в которое входят отрицательные числа. Появление этого понятия в математике связано с расширением множества из натуральных чисел. С его помощью удалось причислить операцию по вычитанию к полноценным арифметическим действиям (таким, как сложение).

Если рассматривать операции с натуральными числами, то можно заметить, что допускается вычитание только меньшего числа из большего. При этом переместительный закон на вычитание не распространяется. К примеру, выражение 3 + 4 – 5 является допустимым, а выражение, в котором операнды переставлены, 3 – 5 + 4 недопустимо.

С помощью добавления к множеству натуральных чисел отрицательных чисел и нуля действие вычитания распространилось на любые пары из натуральных чисел. В результате образовалось множество целых чисел. Для рациональных, а также вещественных чисел аналогично получаются соответствующие отрицательные значения. В случае комплексных чисел понятие отрицательного числа не применимо.

Отрицательные числа отмечены на шкале красным цветом:

Важно заметить, что для какого-либо натурального числа n существует единственное отрицательное число –n, с помощью которого n можно дополнить до нуля:

Абсолютная величина некого числа а представляет собой это число без знака. Обозначается таким образом: |a|. Например:

Действие вычитания некого числа а из другого числа b является равносильным операции сложения b с числом, которое противоположно числу а:

b — a = b + (-a)

На множество отрицательных чисел распространяются почти все алгебраические правила, как и на натуральные числа. Однако существуют некоторые особенности, связанные со свойствами отрицательных чисел:

  1. Множество положительных чисел имеет ограничение снизу, а множество отрицательных чисел ограничено сверху.
  2. Когда умножают числа, обладающие разными знаками, получается отрицательное произведение. Если знаки чисел, которые перемножают, одинаковые, то произведение будет положительно.
  3. Если умножить обе части неравенства на отрицательное число, то такое неравенство поменяет знак на противоположный.
  4. В том случае, когда деление выполняется с остатком, такой остаток является в любом случае неотрицательным.

Основные правила, таблица

Действия с отрицательными числами можно представить в виде таблицы:

Данное правило имеет доказательство. Предположим, что существуют некие самостоятельные числа а и b. Для того чтобы из первого числа вычесть второе, требуется определить число с, которое при сложении с числом b даст в сумме число а:

c + b = a

a − b = c

Доказательство сводится к определению справедливости для уравнения:

a + (− b)+ b = а

В процессе доказательства целесообразно обратиться к свойствам операций с действительными числами. Записанное равенство можно считать верным по действию сочетательного свойства сложения:

(a + (− b)) + b = a + ((− b) + b)

Исходя из того, что в сумме числа, обладающие противоположными знаками, дают нуль, получим:

a + ((− b) + b) = a + 0

Заметим, что при сложении числа с нулем такое число не изменится:

a + 0 = а

В результате доказано равенство:

a – b = a + (−b)

Таким образом, доказано правило вычитания чисел, которые имеют знак минус, то есть являются отрицательными. Данное правило распространяется на любые рациональные и целые числа а и b, так как эти числа характеризуются свойствами, применяемыми в ходе доказательства.

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: