Письменное деление на трёхзначное число

Как делить в столбик: пошаговый алгоритм

Разбор примеров на деление столбиком на двузначное число

Сначала рассмотрим простые случаи деления, когда в частном получается однозначное число.

Первое неполное делимое 265. Больше в делимом цифр нет. Значит в частном будет однозначное число.

Чтобы было легче подобрать цифру частного, разделим 265 не на 53, а на близкое круглое число 50. Для этого 265 разделим на 10, будет 26 (остаток 5). И 26 разделим на 5, будет 5 (остаток 1). Цифру 5 нельзя сразу записывать в частном, поскольку это пробная цифра. Сначала нужно проверить, подойдет ли она. Умножим 53*5=265. Мы видим, что цифра 5 подошла. И теперь можем ее записать в частном под уголок. 265-265=0. Деление выполнено без остатка.

Значение частного чисел 265 и 53 равно 5.

Иногда при делении пробная цифра частного не подходит, и тогда ее нужно менять.

В частном будет однозначное число. 

Чтобы было легче подобрать цифру частного, разделим 184 не на 23, а на 20. Для этого разделим 184 на 10, будет 18 (остаток 4). И 18 разделим на 2, будет 9. 9 – это пробная цифра, мы ее сразу писать в частном не будем, а проверим, подойдет ли она. Умножим 23*9=207. 207 больше, чем 184. Мы видим, что цифра 9 не подходит. В частном будет меньше 9. Попробуем, подойдет ли цифра 8. Умножим 23*8=184. Мы видим, что цифра 8 подходит. Можем ее записать в частном. 184-184=0. Деление выполнено без остатка.

Значение частного чисел 184 и 23 равно 8.

Рассмотрим более сложные случаи деления.

Первое неполное делимое – 76 десятков. Значит, в частном будут 2 цифры.

Определим первую цифру частного. Разделим 76 на 24. Чтобы легче было подобрать цифру частного, разделим 76 не на 24, а на 20. То есть нужно 76 разделить на 10, будет 7 (остаток 6). И 7 разделим на 2, получится 3 (остаток 1). 3 – это пробная цифра частного. Сначала проверим, подойдет ли она. Умножим 24*3=72 . 76-72=4. Остаток меньше делителя. Значит, цифра 3 подошла и теперь мы ее можем записать на месте десятков частного. 72 пишем под первым неполным делимым, между ними ставим знак минус, под чертой записываем остаток.

Продолжим деление. Перепишем в строку с остатком цифру 8, следующую за первым неполным делимым. Получим следующее неполное делимое – 48 единиц. Разделим 48 на 24. Чтобы было легче подобрать цифру частного, разделим 48 не на 24, а на 20. То есть разделим 48 на 10, будет 4 (остаток 8). И 4 разделим на 2, будет 2. Это пробная цифра частного. Мы должны сначала проверить, подойдет ли она. Умножим 24*2=48. Мы видим, что цифра 2 подошла и, значит, можем ее записать на месте единиц частного. 48-48=0, деление выполнено без остатка.

 Значение частного чисел 768 и 24 равно 32.

Первое неполное делимое – 153 сотни, значит, в частном будут три цифры.

Определим первую цифру частного. Разделим 153 на 56. Чтобы легче было подобрать цифру частного, разделим 153 не на 56, а на 50. Для этого разделим 153 на 10, будет 15 (остаток 3). И 15 разделим на 5, будет 3. 3 – это пробная цифра частного. Помните: ее нельзя сразу записывать в частном, а нужно сначала проверить, подойдет ли она. Умножим 56*3=168. 168 больше, чем 153. Значит, в частном будет меньше, чем 3. Проверим, подойдет ли цифра 2. Умножим 56*2=112. 153-112=41. Остаток меньше делителя, значит, цифра 2 подходит, ее можно записать на месте сотен в частном.

Образуем следующее неполное делимое. 153-112=41. Переписываем в ту же строку цифру 4, следующую за первым неполным делимым. Получаем второе неполное делимое  414 десятков. Разделим 414 на 56. Чтобы удобнее было подобрать цифру частного, разделим 414 не на 56, а на 50. 414:10=41(ост.4). 41:5=8(ост.1). Помните: 8 – это пробная цифра. Проверим ее. 56*8=448. 448 больше, чем 414, значит, в частном будет меньше, чем 8. Проверим, подойдет ли цифра 7. Умножим 56 на 7, получится 392. 414-392=22. Остаток меньше делителя. Значит, цифра подошла и в частном на месте десятков можем записать 7.

Пишем в строку с новым остатком 4 единицы. Значит следующее неполное делимое – 224 единицы. Продолжим деление. Разделим 224 на 56. Чтобы легче было подобрать цифру частного, разделим 224 на 50. То есть сначала на 10, будет 22 (остаток 4). И 22 разделим на 5, будет 4 (остаток 2). 4 – это пробная цифра, проверим ее, подойдет ли она. 56*4=224. И мы видим, что цифра подошла. Запишем 4 на месте единиц в частном. 224-224=0, деление выполнено без остатка.

Значение частного чисел 15344 и 56 равно 274.

Как делить столбиком десятичные дроби с запятой?

рисунок с алгоритмом действий при делении десятичной дроби столбиком

Существует несколько особенностей при подобном делении. Если вы совершаете действие с:

  • десятичной дробью-делимым и целым числом-делителем, то действуйте по обычному алгоритму до тех пора, пока закончатся цифры у делимого перед запятой. Затем поставьте её в частном и продолжайте переносить цифры до окончания деления,
  • числом, которое делится на 10, 100, 100 и т.д., то перенесите запятую в делимом влево на количество цифр, равное количеству нулей делителя. Например, 749,5:100=7,495,
  • десятичными дробями одновременно и в делителе, и в делимом, то сначала избавьтесь от запятой у второго элемента. Для этого перенесите её вправо в обоих дробных числах на то количество знаков, которые отделены у делителя. Например, 416,788:5,3 преобразуйте в 4167,88:53 и совершите обычное деление в столбик.

Как объяснить деление дошкольнику

Дети впервые сталкиваются с делением в раннем детстве, когда ещё не понимают, что значит «число». Малыш в песочнице слышит: «Поделись игрушкой», и он понимает, что ведёрко нужно отдать другу, а лопатку оставить себе. 

Основное правило для объяснения любого понятия малышам — показывать на жизненных примерах, при этом они должны соответствовать возрасту ребёнка. Поэтому дошкольникам лучше рассказывать, как делить игрушки и бананы, а не деньги и почтовые конверты.

Шаг 1. Делить без остатка

Есть десять конфет для мамы, папы, ребёнка, бабушки и дедушки. Нужно поделить конфеты так, чтобы у всех было одинаковое количество. Ребёнок будет раздавать всем по одной, пока они не закончатся. Становясь старше, он будет учиться раздавать сразу по две, три и более.

Шаг 2. Делить с остатком

Есть десять конфет для мамы, папы, ребёнка и бабушки. Дедушка отказался от сладкого. Ребёнок может раздать каждому по две конфеты, и  две останутся.

Шаг 3. Делить с остатком, который делится

Ребёнок может раздать всем членам семьи, кроме дедушки, по половинке конфеты, разделив две конфеты, от которых дедушка отказался. Тогда у каждого будет по две с половиной конфеты.

Скачать карточки

В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.

Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.

Понравился наш контент? Подпишитесь на канал в .

Как письменно делить в столбик двузначное число на однозначное и двузначное: примеры, объяснение

Приступим к пошаговому разбору примеров на деление в столбик.

Осуществите действие над цифрами 25 и 2:

  • запишите их рядом и разделите линиями границы,
  • определите нужное количество цифр делимого для первого действия,
  • запишите значение под делителем и результат умножения под делимым,
  • выполните вычитание,
  • допишите вторую цифру делимого и повторите действия на умножение и вычитание.

Частично выполненное задание на деление столбиком двузначного числа на однозначное смотрите ниже:

Учтите, что деление столбиком двухзначного числа на однозначное возможно и в одно действие.

Второй пример. Разделите 87 на 26 в столбик.

Алгоритм аналогичен рассмотренному выше с той лишь разницей, что учитывать нужно сразу 2 числа делителя при определении количества раз повторения в делимом.

Чтобы облегчить задачу ребёнку, который только осваивается азы деления, предложите ему ориентироваться на первые цифры у делимого и делителя. Например, 8:2=4. Пусть ребёнок подставит это число под черту и выполнит умножение. Ему нужно увидеть своими глазами, что 4 много и нужно попробовать с тройкой.

Ниже пример деления столбиком двузначного числа на двузначное с остатком.

Третий пример. Как разделить число в столбик с нулем в ответе.

Вначале делим 15 на 15, в остатке 0, в ответ 1. Сносим 6, а оно на 15 не делится, значит ставим в ответе 0. Далее, 15 умноженное на 0, будет ноль и его отнимаем от 6. Сносим ноль, что в конце числа, получаем 60, которое делится на 15 и в ответ ставим 4.

Общие сведения

Любую математическую операцию можно осуществить в столбик. Деление не является исключением. Следует отметить, что оно бывает без остатка и с ним. Если выполняется операция первого типа, то необходимо знать признаки деления. Последними называются правила, по которым можно определить — делится ли число на другое без остатка. Однако во втором случае в конце вычислений получается определенное значение. Его математики называют остатком.

Деление такого типа широко применяет в языках программирования для создания различных условий. Если необходимо произвести деление в столбик на однозначное число без остатка, то нужно знать признаки делимости. Последние не нужны в том случае, когда следует осуществить деление с остатком трехзначного числа на однозначное. Следует отметить, что нужно различать терминологию. Не все люди знают основное различие между цифрами и числами. Первые применяются для образования вторых, то есть первые — набор знаков.

Основным требованием, необходимым для осуществления этой операции, является доскональное знание таблицы умножения. Без последней не обходится ни один урок, письменное отчетное задание или сдача экзамена. Операция деления применяется реже сложения, вычитания или умножения. Однако ее следует знать досконально и уметь производить вычисления не только при помощи калькулятора или компьютера, но и в ручном режиме.

Иногда ученики сталкиваются с непониманием материала, который не может объяснить доходчиво учитель для каждого индивидуально. Если у ребенка проблемы в какой-либо учебной четверти, то не стоит затягивать с решением проблемы. Родителям нужно разработать собственную систему обучения или воспользоваться уже готовой. Однако некоторые из них начинают кричать на ребенка, травмируя психику. Следует помнить, что он часто копирует поведение родителей. Когда они его приучают к эмоциональному решению проблем, тогда и вырастают неуверенные в себе молодые люди.

Следует помнить, что для изучения любой точной науки необходимо терпение. Сразу ничего не получалось даже у знаменитых математиков. Необходимо дома создать уютный уголок с тренажерами для тренировок по решению математических задач. Пусть это будет своеобразный офис для малыша. Ему необходимо помочь его оборудовать: распечатать необходимый математический материал и сделать хорошее освещение.

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий при делении на двузначные числа. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.

  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370

Важно начинать запись с первого числа слева.
После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
Теперь делим 370 на 74. Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик

Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка.

Подбираем множитель (5) и записываем его под уголком.
Умножаем 5 на 74, записываем результат в столбик. Получится 370.
Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка.

4070:74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

Как научиться делить в столбик многозначные числа

Этапы деления в столбик многозначного числа аналогичны классическому делению многозначного числа на однозначное

В первом случае учитываем только первую цифру делителя, а при делении на многозначное берем во внимание количество всех цифр делителя. Рабочее число обязательно должно быть больше делителя

В других случаях – добавляем цифру следующего разряда и производим деление по алгоритму. Математические действия на деление в столбик будут под силу школьнику, если он поймет основной алгоритм вычисления. Правильность решения всегда можно проверить умножением.

Выполним деление четырёхзначного числа (2562) на трёхзначное число (427) в столбик.

(25) сотен при делении на (427) не дадут сотен в частном.

(256) десятков при делении на (427) не дадут десятков в частном.

(2562) единицы нужно разделить на (427).

Чтобы легче было найти частное, округлим делимое (2562) и делитель (427) до сотен, получим (2600) и (400).

Разделив (26) сот. на (4) сот. , получим примерно (6).

Теперь следует обязательно проверить, подходит ли найденное число.

Чтобы проверить, умножим (427) на (6).

(6) — будет частным чисел (2562) и (427).

1) теперь разделим (854) на (427).

Выполним проверку:  (427 · 2  = 854).

2) Найдём частное чисел (2256)  и (752).

Проверка: (752 · 3  = 2256).

Письменное деление на трехзначное число

Ребята, как вы думаете, отличается ли алгоритм деления на трехзначное число от знакомого нам алгоритма на двузначное число?

Нет, не отличается! Давайте повторим последовательность наших действий при делении столбиком.

Используя данный алгоритм, решим вместе несколько примеров. Будем делать записи в черновике. Вы знаете, что цифры в частном – пробные, и требуется  проверка.

984 : 123        1 155 : 9        318 : 106        5 850 : 9

Оставшиеся примеры на деление решите самостоятельно. Проверьте себя по образцу.

Проверь себя.

При делении многозначных чисел столбиком ребята часто пропускают нули в частном. Обидная ошибка! Как этого не допустить? Рассмотрим более сложные случаи деления, когда в частном появляются нули.

Есть маленькие секреты безошибочного деления столбиком!

  • Обязательно определяйте количество цифр в частном. Даже если вы случайно пропустили нуль, точки подскажут, что цифр в частном недостаточно.
  • Делайте проверку: умножьте делитель на частное. Должно получиться делимое.

А теперь решите самостоятельно  пример. Подумайте, нужен ли нуль в частном. Сравните свое решение с образцом.

55 692 : 273

Проверь себя.

Разложение на слагаемые

Интересным вариантом алгоритма является метод разложения числа на слагаемые. Его суть очень проста: представление делимого в виде суммы нескольких слагаемых, при условии деления каждого из них на выбранное число. Инструкция является очень простой. Она может стать дополнительным математическим тренажером для ребенка, поскольку развивает мышление и улучшает память. Для деления любого числа на другое нужно строго выполнить следующие шаги:

  1. Методом подбора разложить число на слагаемые, каждое из которых должно делиться на делитель.
  2. Разделить значения в первом пункте на заданный делитель.
  3. Сложить результаты для получения итоговой суммы.

На первом шаге специалисты рекомендуют слагаемые отделить от делителя круглыми скобками. Записывать нужно в одну строчку для наглядности. Далее следует выполнить деление или сократить слагаемые на множитель. Полученную сумму сложить и записать ответ. Например, следует вычислить 156/4.

Выполняется эта процедура таким образом:

  1. Разложение: 156 = (140 + 16) = (160 — 4).
  2. Деление: (140 + 16) / 4.
  3. Результат: 35 + 4 = 39.

Специалисты рекомендуют представлять число в удобной форме, а не только в виде суммы. Доказывать, что это значение является простым не нужно, поскольку не стоит такая задача. Этот алгоритм необходимо записать на картонную карточку. Чтобы научиться по нему решать, можно также написать текст или инструкцию. Одним словом, следует руководствоваться удобством для ребенка.

Как письменно делить в столбик двузначное число на однозначное и двузначное: примеры, объяснение

обучение ребёнка делению методом солнышка

Приступим к пошаговому разбору примеров на деление в столбик.

Осуществите действие над цифрами 25 и 2:

  • запишите их рядом и разделите линиями границы,
  • определите нужное количество цифр делимого для первого действия,
  • запишите значение под делителем и результат умножения под делимым,
  • выполните вычитание,
  • допишите вторую цифру делимого и повторите действия на умножение и вычитание.

Частично выполненное задание на деление столбиком двузначного числа на однозначное смотрите ниже:

незаконченное решение примера на деление столбиком двузначного числа на однозначное

Учтите, что деление столбиком двухзначного числа на однозначное возможно и в одно действие.

Второй пример. Разделите 87 на 26 в столбик.

Алгоритм аналогичен рассмотренному выше с той лишь разницей, что учитывать нужно сразу 2 числа делителя при определении количества раз повторения в делимом.

Чтобы облегчить задачу ребёнку, который только осваивается азы деления, предложите ему ориентироваться на первые цифры у делимого и делителя. Например, 8:2=4. Пусть ребёнок подставит это число под черту и выполнит умножение. Ему нужно увидеть своими глазами, что 4 много и нужно попробовать с тройкой.

Ниже пример деления столбиком двузначного числа на двузначное с остатком.

пример деления столбиком двузначного числа на двузначное с остатком

Третий пример. Как разделить число в столбик с нулем в ответе.

Вначале делим 15 на 15, в остатке 0, в ответ 1. Сносим 6, а оно на 15 не делится, значит ставим в ответе 0. Далее, 15 умноженное на 0, будет ноль и его отнимаем от 6. Сносим ноль, что в конце числа, получаем 60, которое делится на 15 и в ответ ставим 4.

Как объяснить ребенку деление и научить делить столбиком?

дети-школьники тренируются делить числа столбиком

Во-первых, учтите ряд вводных факторов:

  • ребёнок знает таблицу умножения
  • хорошо разбирается и умеет применять на практике действия вычитания и сложения
  • понимает разницу между целым и его составными элементами

Дальше акценты в ваших действиях выглядят так:

  • поиграйте с таблицей умножения. Положите её перед ребёнком и на примерах покажите удобство использования при делении,
  • объясните расположение делимого, делителя, частного, остатка. Предложите ребёнку повторить эти категории,
  • превратите процесс в игру, придумайте историю про цифры и действие деления,
  • подготовьте наглядные предметы для обучения. Подойдут счётные палочки, яблоки, монеты, игрушки, очищенные сведение или апельсин. Предлагайте их распределить между разным количеством людей, например, между мамой, папой и ребенком,
  • первым показывайте ребёнку действия с чётными числами, чтобы он видел результат деления, кратный двум.

Сам процесс освоения деления столбиком:

  • запишите цифры, разделив их границами. Повторите с ребёнком расположение категорий деления,
  • предложите ему проанализировать цифры делимого на предмет «больше-меньше» делителя. Помогайте вопросом — сколько раз одно число помещается во втором. В результате ребёнку следует выделить то число/числа, которые он будет применять для совершения первого действия,
  • подскажите алгоритм определения разрядности частного. Её удобно изобразить точками, которые потом превратятся в цифры,
  • помогите правильно определить и записать первое число в частное, совершите его умножение на делитель, запишите результат под делимым, выполните вычитание. Объясните, что результат вычитания всегда должен быть меньше делителя. В противном случае действие совершилось с ошибкой и его следует переделать,
  • следующий шаг — анализ ситуации с добавлением второго числа от делимого и определения количества раз повторения делителя в нём,
  • снова помогите с записью действия,
  • продолжайте до момента, когда результат от разницы составит ноль. Это актуально только для деления чисел без остатка,
  • закрепите знания у ребёнка еще несколькими примерами. Следите, чтобы он не устал, иначе дайте перерыв.

Разбор примеров

Приведём пример деления шестизначного числа на двузначное число.

Действуем по известному алгоритму.

Делим 773075 на 85. Выделяем первое неполное делимое — 773.

Разделим 77 на 8, получим 9 — это пробная цифра.

Проверяем, подходит ли цифра 9 — 77 * 9 = 765.

773 — 765 = 8. Добавляем 0 сотен.

Находим вторую цифру частного 80 / 85.

80 < 85, пишем в частном 0. Добавляем 7 десятков.

Находим третью цифру частного 807 / 85, получаем 9.

807 — 765 = 42. Добавляем 5 единиц.

Находим четвёртую цифру частного: 425 / 85, получаем 5.

425 — 425 = 0. Частное – 9095

Рассмотрим пример деления на трёхзначное число.

Нужно разделить 7222 / 314. Выделяем первое неполное делимое — 722. Чтобы легче было найти цифру частного, разделим 722 на 300.

Для этого разделим 7 на 3, в частном получим 2.

Это пробная цифра, её нужно проверить.

Умножим 314 на 2, получится 628. 722 — 628 = 94. Добавим 2 единицы.

Находим вторую цифру частного: 942 / 314, получаем 3.

Умножаем 314 на 3, получаем 942.

942 — 942 = 0.

Частное 23.

Для деления в уме трёхзначного числа на двузначное число сначала нужно определить количество цифр в ответе.

Если делим трёхзначное число на двузначное число, то ответ может быть однозначным или двузначным числом.

Если произведение делителя на 10 (минимальное двузначное число) больше делимого, то ответ – однозначное число, а если произведение делителя на 10 меньше делимого, то ответ – двузначное число.

Рассмотрим первый вариант, когда ответ — однозначное число.

Требуется разделить 476 на 59.

59 * 10 = 590, 590 > 476, то ответ является однозначным числом:

  • определяем результат с точностью до единиц. Так как 59 * 8 = 472, а 59 * 9 = 531, то результат, округленный в меньшую сторону до единиц, равен 8;
  • находим остаток 476 – 472 = 4;
  • поучаем результат 472 (остаток 4);

Разберем второй вариант, когда ответом будет двузначное число.

Надо найти частное 759 / 24.

Умножение 24 на 10 дает 240. Так как 240 < 759, то ответ является двузначным числом:

  • определяем результат с точностью до десятков. Так как 24 * 30 = 720, а 24 * 40 = 960, то результат, округленный в меньшую сторону до десятков, равен 30;
  • отнимаем от делимого делитель, умноженный на число, определенное в пункте 1: 759 – 24 * 30 = 759 – 720 = 39;
  • делим результат пункта 2 на делитель 39 / 24, так как 24 * 1 = 24 и 39 – 24 = 15, то 39 / 24 = 1(остаток 15);
  • прибавляем к результату пункта 1 результат третьего пункта: 30 + 1(ост. 15) = 31(ост. 15).

Как научиться делить столбиком трехзначные числа

Когда в делителе стоит трехзначное число, действие лучше всего выполнять в столбик. Алгоритм математического решения аналогичен делению на двузначное число.

Для примера рассмотрим следующие действия: 146676 : 719

146&lt;719, поэтому сразу возьмем четырехзначное число «1466». В данном значении помещается 2 делителя: 719 х 2= 1438. Цифра «2» будет первым значением частного. Ее запишем справа под уголком.

1466 — 1438 = 28. Полученную разность запишем под чертой слева. Снесем к 28 цифру «7». 287&lt;719, поэтому рядом с двойкой запишем «0».

Снесем последнюю цифру делимого «6», в итоге получится число «2876», которое разделим на 719. Возьмем по 3: 719 х 3 = 2157 — мало, можно взять по 4: 719 х 4 = 2876. Цифру «4» запишем рядом с «20», получим в ответе 204. От 2876 отнимем 2876 , получим разность 0.

Желательно в конце проверить правильность выполнения действий: 204 х 719 = 146676. Ответ верен.

Как делить столбиком числа с нулями?

Последовательность и алгоритм действий аналогичен классическому, рассмотренному в первом разделе.

Из нюансов отметим:

  • при наличии нулей в конце делителя и делимого смело сокращайте их. Предложите ребёнку зачеркнуть их карандашом и продолжить деление как обычно. Например, в ситуации 1200:400 ребёнок может убрать оба нуля у обоих чисел, но в ситуации 15600:560 — только по одному крайнему,
  • если ноль есть только в делителе, то подбирайте первую цифру для действия, ориентируясь на число перед ним. Например, в примере 6537:70 поставьте 9 в частное первым числом. Для данного примера совершайте умножение на обе цифры делителя и подписывайте их под тремя у делимого.

Когда нулей у делимого много и процесс деления закончился до того, как вы их все использовали, то перенесите их в частное после цифр, которые образовались до этого. Пример, 1000:2=500 — вы перенесли два последних нуля.

Итак, мы рассмотрели основные ситуации деления чисел разного количества разрядности в столбик, определили алгоритм действия и акценты для обучения ребёнка.

Практикуйте полученные знания и помогайте своему чаду осваивать математику.

Письменное деление на двузначное число

Что нужно знать и уметь, чтобы хорошо научиться делить на двузначное число? Подумайте, ребята!

Конечно, надо знать назубок таблицу умножения – это первое. А второе – уметь делить на однозначное число столбиком (уголком).

Давайте вспомним алгоритм деления на однозначное число.

Решите самостоятельно примеры уголком и проверьте себя по образцу.

А теперь рассмотрим деление уголком на двузначное число. Нам понадобится черновик. При делении на двузначное число цифру, которую мы подобрали, требуется проверить умножением. Если цифра не подошла (а такое бывает), подбираем следующую цифру, снова проверяем умножением и так далее. Все эти вычисления лучше выполнить на черновике. Например, разделим 624 на 26. Запишем пример столбиком (уголком).

Обязательно проговариваем каждый этап вычислений.

Пользуясь алгоритмом, решите самостоятельно два примера столбиком. Проговаривайте каждый этап, чтобы не допустить ошибку. Сравните с образцом.

448 : 64      952 : 34

Ребята, вы заметили, что алгоритм остается прежним? Требуется лишь больше внимания и сосредоточенности.

Попробуйте и вы, ребята, овладеть делением!

Общий принцип деления в столбик

Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.

Решим пример \(\textcolor{red} {295383\div 34}\).

Далее записываем известные
компоненты деления следующим образом:

и начинаем вычисление:

1. Берем первое неполное делимое и пытаемся его разделить на делитель.

Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.

Записываем в частное первую найденную цифру
разряда тысяч, а под неполным делимым пишем результат произведения неполного
частного и делителя
. И сразу же находим остаток от этого действия, т.е.
вычитаем из неполного частного результат этого произведения.

В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor{red} {8\cdot 37=272}\). Записываем его под 295 и находим разницу: \(\textcolor{red} {295-272=23}\). Значит, 23 тысячи у нас остаются неразделенными.

В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.

2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.

Находим результат деления второго неполного делимого на делитель. 233 сотни разделить на 34 будет 6 сотен. Значит, в разряде сотен частного будет цифра 6. Умножаем ее на делитель 34, получаем 204 и еще 29 сотен неразделенных.

3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.

При делении второго неполного делимого 298 десятков на делитель 34 получается 8 десятков, и еще 26 десятков неразделенных (как и в предыдущих действиях, я умножил 8 на 34 и результат отнял от 298). Поэтому, в частном, в разряде десятков записываем цифру 8.

4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.

Разделив 263 единицы на 34, получаем 7 полных единиц и 25 неразделенных. Записав в частном последнюю цифру разряда единиц, получаем окончательный ответ действия \(\textcolor{red} {295383\div 34=8687}\) и 25 в остатке.

Рассмотрим еще один пример. \(\textcolor{red} {25326\div 63}\).

Первое неполное делимое будет 253 сотни, количество цифр в частном – 3.

Делим 253 сотни на 63, получается 4 полных сотни и неразделенная 1 сотня в остатке.

1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.

Но 12 не делится нацело на 63 части, то есть, нет ни одного целого десятка в каждой части. Значит, мы в частном в разряде десятков должны записать , поскольку все 12 десятков оказались неразделенными. А к этим 12 десяткам (т.е. 120 сотням) добавить (снести) 6 единиц делимого.

Итак, запомните, что
каждое неполное делимое образует в частном одну цифру соответствующего разряда
и что даже если неполное делимое меньше делителя, то в частном все равно нужно
записать нулевой результат этого действия.

126 единиц делим на 63, получается 2 единицы без остатка. Теперь мы можем записать окончательный ответ деления \(\textcolor{red} {25326\div 63=402}\).

Итак, в общем виде алгоритм деления в столбик выглядит так:1. Находим первое неполное делимое и количество цифр в частном.2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.4. Ставим между ними знак минус и выполняем действие.5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.7. Если неполное делимое невозможно разделить на делитель, то в частном ставится и к этому неполному делимому сносится следующая цифра.

Проверка деления

Каждое действие проверяется обратным: сложение − вычитанием, а деление – умножением.

Давайте проверим, правильно ли выполнено деление. Для этого 209 ∙ 4. Запишите решение столбиком.

Умножение выполняем справа налево с разряда единиц.

9 × 4 = 36. Шестерку запишите под четверкой. Троечку запомните.

0 × 4 = 0. Три в уме. В разряд десятков идет 3.

Два умножить на четыре – восемь.  Произведение 836 равно делимому.

Вывод: действие деления было выполнено без ошибок. Когда число меньше делителя, то в ответе надо записывать нуль.

Самостоятельно выполните деление 816 : 6 и сделайте проверку деления умножением.

Сверьте с образцом:

Частное 136 надо умножить на делитель 6. При умножении получилось делимое 816.

Вывод: действия решили верно.

Вы сегодня получили ключ к успеху в математике. Смело открывайте им замки любой сложности.

Наш необычный урок подходит к концу. Ребята, вы познакомились с удивительным насекомым. Пчелу надо ценить: она работает без отдыха на благо природы. Ведь без опыления растений не будет ни семян, ни плодов.

Без пчелы нельзя отведать ценнейшего лекарства − меда, воспользоваться воском, который может вырабатывать только пчела. Чем больше тружеников, тем краше Земля от благоухающих цветов. Помните об этом и уважайте свою и чужую работу.

Определите, какое ваше настроение после урока по пятибалльной шкале и проверьте знания по тесту.

Рекомендации специалистов

При изучении особенностей детского организма специалисты рекомендуют внести некоторые новшества в успешное овладение математическими навыками. Они считают, что умственную нагрузку нужно давать постепенно. Дети — это не взрослые, а значит, их необходимо заинтересовать. Существует множество видеокурсов. Они хороши, но не заменят индивидуального обучения.

Специалист может найти подход к ребенку, но отец и мать сделают это намного быстрее

Ему будет приятно, что родители уделяют ему внимание. Это и есть важный психологический аспект в обучении

Для каждой ситуации следует оборудовать рабочее место. Оно должно включать в себя следующие принадлежности:

  1. Таблица умножения.
  2. Тетрадь и ручка.
  3. Некоторые внетабличные примеры (не нужно использовать шаблоны).
  4. Алгоритмы на карточках.
  5. Примеры решения.
  6. Таблица простых чисел.

Таблицу умножения следует выучить, а затем забрать ее у ребенка. Всем остальным он должен пользоваться. Мозг человека способен к пассивному запоминанию информации. Ее нет смысла зубрить, а лучше потратить это время на решение упражнений. Знания отложатся в памяти. За каждый успех необходимо хвалить ребенка, но за его промахи ругать не имеет смысла. В этом случае нужно помочь

Очень важно делать перерывы. Время распределяется следующим образом: 40 минут занятие и 20 — отдых

Такую методику обучения рекомендуется применять, когда ребенок «частит» с пропусками школы.

Для деления трехзначного числа на однозначное нужно знать таблицу умножения, признаки делимости и основные алгоритмы.

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: