Теорема о делимости целых чисел с остатком
Когда мы говорили о делении натуральных чисел с остатком, то выяснили, что делимое a, делитель b, неполное частное c и остаток d связаны между собой равенством a=b·c+d. Для целых чисел a, b, c и d характерна такая же связь. Эта связь утверждается следующей теоремой о делимости с остатком.
Теорема.
Любое целое число a возможно представить единственным образом через целое и отличное от нуля число b в виде a=b·q+r, где q и r – некоторые целые числа, причем .
Доказательство.
Сначала докажем возможность представления a=b·q+r.
Если целые числа a и b такие, что a делится на b нацело, то по определению существует такое целое число q, что a=b·q. В этом случае имеет место равенство a=b·q+r при r=0.
Теперь будем считать, что b – целое положительное число. Выберем целое число q таким образом, чтобы произведение b·q не превышало числа a, а произведение b·(q+1) было уже больше, чем a. То есть, возьмем q таким, чтобы выполнялись неравенства b·q<a<b·(q+1). После вычитания из всех частей этого неравенства произведения b·q приходим к неравенствам вида 0<a−b·q<b. Так как значение выражения a−b·q положительно и не превышает b (b – положительное число), то это значение можно принять в качестве r, то есть, r=a−b·q. Откуда получаем нужное представление числа a вида a=b·q+r.
Осталось доказать возможность представления a=b·q+r для отрицательных b.
Так как модуль числа b в этом случае является положительным числом, то для имеет место представление , где q1 – некоторое целое число, а r – целое число, удовлетворяющее условиям . Тогда, приняв q=−q1, получаем нужное нам представление a=b·q+r для отрицательных b.
Переходим к доказательству единственности.
Предположим, что помимо представления a=b·q+r, q и r – целые числа и , существует еще одно представление a=b·q1+r1, где q1 и r1 – некоторые целые числа, причем q1≠q и .
После вычитания из левой и правой части первого равенства соответственно левой и правой части второго равенства, получаем 0=b·(q−q1)+r−r1, которое равносильно равенству r−r1=b·(q1−q). Тогда должно быть справедливо и равенство вида , а в силу свойств модуля числа — и равенство .
Из условий и можно сделать вывод, что . Так как q и q1 – целые и q≠q1, то , откуда заключаем, что . Из полученных неравенств и следует, что равенство вида невозможно при нашем предположении. Поэтому, не существует другого представления числа a, кроме a=b·q+r.
Как найти остаток
Рассмотрим другой пример$$\textcolor{orange}{42}:\textcolor{coral}{9}=\textcolor{green}{x}\space(ост.\space \textcolor{blue}{y})$$Давайте попробуем найти $\textcolor{green}{x}$ и $\textcolor{blue}{y}$:
- Сначала нужно проверить, есть остаток или нет. В нашем случае $\textcolor{orange}{42}$ не делится нацело на $\textcolor{coral}{9}$, значит, остаток есть.
- Теперь подберем самое большое число, которое можно разделить нацело на делитель. При этом данное число должно быть меньше самого делимого. $\textcolor{purple}{36}$ — самое большое число, которое делится нацело на $\textcolor{coral}{9}$.
- Чтобы получить $\textcolor{purple}{36}$, нужно $\textcolor{coral}{9}$ умножить на $\textcolor{green}{4}$, значит, $\textcolor{green}{4}$ и будет неполным частным $\textcolor{green}{x}$.
- Из $\textcolor{orange}{42}$ вычтем произведение делителя и неполного частного $(\textcolor{orange}{42} — \textcolor{purple}{36})$. В ответе получаем $\textcolor{blue}{6}$ — это как раз и будет остаток $\textcolor{blue}{y}$. Пример решен!
Запомним еще два правила, которые необходимы при работе с остатком:
{"questions":,"placeholder":0,"answer":0}},"step":1,"hints":}]}
Как проводится
Деление с остатком – это способ, при котором число нельзя разделить ровно на несколько частей. В результате данного математического действия, помимо целой части, остается неделимый кусок.
Приведем простой пример
того, как делить с остатком:
Есть банка на 5 литров воды и 2 банки по 2 литра. Когда из пяти литровой банки воду переливают в двухлитровые, в пятилитровой останется 1 литр не использованной воды. Это и есть остаток. В цифровом варианте это выглядит так:
5:2=2 ост (1). Откуда 1? 2х2=4, 5-4=1.
Теперь рассмотрим порядок деления в столбик с остатком. Это визуально облегчает процесс расчета и помогает не потерять числа.
Алгоритм определяет расположение всех элементов и последовательность действий, по которой совершается вычисление. В качестве примера, разделим 17 на 5.
Основные этапы
:
- Правильная запись. Делимое (17) – располагается по левую сторону. Правее от делимого пишут делитель (5). Между ними проводят вертикальную черту (обозначает знак деления), а затем, от этой черты проводят горизонтальную, подчеркивая делитель. Основные черты обозначена оранжевым цветом.
- Поиск целого. Далее, проводят первый и самый простой расчет – сколько делителей умещается в делимом. Воспользуемся таблицей умножения и проверим по порядку: 5*1=5 — помещается, 5*2=10 — помещается, 5*3=15 — помещается, 5*4=20 – не помещается. Пять раз по четыре – больше чем семнадцать, значит, четвертая пятерка не вмещается. Возвращаемся к трем. В 17 литровую банку влезет 3 пятилитровых. Записываем результат в форму: 3 пишем под чертой, под делителем. 3 – это неполное частное.
- Определение остатка. 3*5=15. 15 записываем под делимым. Подводим черту (обозначает знак «=»). Вычитаем из делимого полученное число: 17-15=2. Записываем результат ниже под чертой – в столбик (отсюда и название алгоритма). 2 – это остаток.
Обратите внимание!
При делении таким образом, остаток всегда должен быть меньше делителя
Скачать карточки
В качестве домашнего математического тренажера используйте карточки с примерами. В них включайте разные случаи: с однозначными и многозначными числами, с нулями, деление с полным результатом и остатком. Скачать карточки можно бесплатно. Раздаточный материал обязательно следует напечатать для проверочной работы.
Ошибки с делением у детей в начальной школе встречаются довольно часто. Уделите этой теме максимум внимания и времени, чтобы усвоение последующего материала проходило без запинок. Используйте карточки, видеоуроки, постоянную тренировку навыка и повторение пройденных тем и правил в игровой форме. Тогда домашние уроки не навеют на ребенку скуку и пройдут с максимальной пользой.
Понравился наш контент? Подпишитесь на канал в .
Historical stages of development
Although the binary number system was not actively used until after the 17th century, there is evidence that it existed even at the dawn of civilizations. So, the Indian mathematician Pingala in 200 BC developed a system by which textual information could be converted into a binary code, and each letter had its own binary value.
Ancient Incas more than a thousand years ago used the quipu script, in which, in addition to decimal numbers, binary numbers were present. And in the ancient Chinese “Book of Changes”, or “I Ching”, dated to the 11th century, 64 hexagrams and 8 trigrams are depicted, corresponding to 6-bit and 3-bit numbers, respectively. The binary system for displaying information in the Middle Ages also existed in Africa — in the traditional divination of many tribes, for example — in Ifa divination.
In the 17th century, the German scientist Gottfried Wilhelm Leibniz, in his scientific work Explication de l’Arithmétique Binaire, described the binary system in detail, bringing it to its final form — the one that still exists. In his studies, he relied on the Chinese «Book of Changes» of the 11th century, which made a strong impression on Leibniz. He called it «a major Chinese achievement in philosophical mathematics» and believed that its author Shao Yong was ahead of his time.
The English mathematician George Boole is considered to be the father of mathematical logic. A branch of mathematical logic, Boolean algebra (algebra of logic), is named after him. In 1848, George Boole published an article on the principles of mathematical logic — «Mathematical Analysis of Logic, or an Experience in the Calculus of Deductive Inferences», and in 1854 his main work appeared — «Investigation of the laws of thought, on which the mathematical theories of logic and probability are based.» In it, the mathematician described algebraic number systems in relation to logic, and laid the foundation for the development of simple, and later increasingly complex electronic logic circuits.
In the 20th century, research on the binary system continued, and in 1937, American engineer Claude Shannon combined binary arithmetic and Boolean algebra, applying them in tandem to electronic relays and switches. The work of all modern electronic computing devices is, in fact, based on Shannon’s research. In the same 1937, the Model K binary digital computer was created, which by 1940, after a series of upgrades, could already calculate complex numbers. Its creator, George Stibitz, for the first time gave a command to a computing device remotely: over a telephone line, thereby opening up horizons for the further creation and development of the Internet.
Деление с остатком.
Рассмотрим простой пример:
15:5=3
В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.
Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу:
В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?
Решение:
Поделим число 16 на 5 столбиком получим:
Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.
16=5⋅3+1
a=b⋅c+da – делимое,b – делитель,c – неполное частное,d – остаток.
Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.
Работа с многозначными числами
Программа за 4 класс предлагает более сложный процесс проведения деления с увеличением расчетных чисел. Если в третьем классе расчеты проводились на основе базовой таблицы умножения в пределах от 1 до 10, то четвероклассники вычисления проводят с многозначными числами более 100.
Данное действие удобнее всего выполнять в столбик, так как неполное частное также будет двузначным числом (в большинстве случаев), а алгоритм столбика облегчает вычисления и делает их более наглядными.
Разделим многозначные числа на двузначные: 386:25
Данный пример отличается от предыдущих количеством уровней расчета, хотя вычисления проводят по тому же принципу, что и ранее. Рассмотрим подробнее:
386 – делимое, 25 – делитель. Необходимо найти неполное частное и выделить остаток.
Первый уровень
Делитель – двузначное число. Делимое – трехзначное. Выделяем у делимого первые две левые цифры – это 38. Сравниваем их с делителем. 38 больше 25? Да, значит, 38 можно разделить на 25. Сколько целых 25 входит в 38?
25*1=25, 25*2=50. 50 больше 38, возвращаемся на один шаг назад.
Ответ – 1. Записываем единицу в зону не полного частного.
Далее:
38-25=13. Записываем число 13 под чертой.
Второй уровень
13 больше 25? Нет – значит можно «опустить» цифру 6 вниз, дописав ее рядом с 13, справа. Получилось 136. 136 больше 25? Да – значит можно его вычесть. Сколько раз 25 поместиться в 136?
25*1=25, 25*2=50, 25*3=75, 25*4=100, 25*5=125, 256*=150. 150 больше 136 – возвращаемся назад на один шаг. Записываем цифру 5 в зону неполного частного, справа от единицы.
Вычисляем остаток:
136-125=11. Записываем под чертой. 11 больше 25? Нет – деление провести нельзя. У делимого остались цифры? Нет – делить больше нечего. Вычисления закончены.
Ответ: неполное частное равно 15, в остатке 11.
А если будет предложено такое деление, когда двузначный делитель больше первых двух цифр многозначного делимого? В таком случае, третья (четвертая, пятая и последующая) цифра делимого принимает участие в вычислениях сразу.
Приведем примеры на деление с трех- и четырехзначными числами:
386:75
75 – двузначное число. 386 – трехзначное. Сравниваем первые две цифры слева с делителем. 38 больше 75? Нет – деление провести нельзя. Берем все 3 цифры. 386 больше 75? Да – деление провести можно. Проводим вычисления.
75*1=75, 75*2=150, 75*3=225, 75*4=300, 75*5= 375, 75*6=450. 450 больше 386 – возвращаемся на шаг назад. Записываем 5 в зону неполного частного.
Находим остаток: 386-375=11. 11 больше 75? Нет. Еще остались цифры у делимого? Нет. Вычисления закончены.
Ответ: неполное частное = 5, в остатке 11.
119:35
Выполняем проверку: 11 больше 35? Нет – деление провести нельзя. Подставляем третье число – 119 больше 35? Да – действие провести можем.
35*1=35, 35*2=70, 35*3=105, 35*4=140. 140 больше 119 – возвращаемся на один шаг назад. Записываем 3 в зону неполного остатка.
Находим остаток: 119-105=14. 14 больше 35? Нет. Остались цифры у делимого? Нет. Вычисления закончены.
Ответ: неполное частное = 3, осталось 14.
1195:99
Проверяем: 11 больше 99? Нет – подставляем еще одну цифру. 119 больше 99? Да – начинаем вычисления.
11<,99, 119>,99.
99*1=99, 99*2=198 – перебор. Записываем 1 в неполное частное.
Находим остаток: 119-99=20. 20<,99. Опускаем 5. 205>,99. Вычисляем.
99*1=99, 99*2=198, 99*3=297. Перебор. Записываем 2 в неполное частное.
Находим остаток: 205-198=7.
Ответ: неполное частное = 12, остаток 7.
Деление с остатком примеры
Учимся делить в столбик с остатком
Проверка результата деления целых чисел с остатком
После того, как выполнено деление целых чисел с остатком, полезно выполнить проверку полученного результата. Проверка проводится в два этапа. На первом этапе проверяется, является ли остаток d неотрицательным числом, а также проверяется выполнение условия . Если все условия первого этапа проверки выполнены, то можно приступать ко второму этапу проверки, в противном случае можно утверждать, что при делении с остатком где-то была допущена ошибка. На втором этапе проверяется справедливость равенства a=b·c+d. Если это равенство справедливо, то деление с остатком было проведено верно, в противном случае – где-то была допущена ошибка.
Рассмотрим решения примеров, в которых выполняется проверка результата деления целых чисел с остатком.
Пример.
При делении числа −521 на −12 было получено неполное частное 44 и остаток 7, выполните проверку результата.
Решение.
Во-первых, остаток 7 является положительным числом, и его величина меньше, чем модуль делителя (модуль делителя −12 равен 12). Таким образом, можно переходить ко второму этапу проверки.
В этом примере a=−521, b=−12, c=44, d=7. Вычислим значение выражения b·c+d, имеем b·c+d=−12·44+7=−528+7=−521. Следовательно, равенство a=b·c+d верное.
Результаты деления прошли проверку, то есть, деление с остатком было выполнено верно.
Пример.
Правильно ли было выполнено деление с остатком, если был получен следующий результат (−17):5=−3 (ост. −2)?
Решение.
Первый этап проверки позволяет нам заключить, что деление целых чисел с остатком проведено неправильно, так как получился остаток −2, а остаток не может быть отрицательным числом.
(Отметим, что условие второго этапа проверки оказывается выполненным, но этого не достаточно).
Ответ:
нет.
Пример.
Целое отрицательное число −19 было разделено на целое отрицательное число −3, при этом было получено неполное частное 7 и остаток 1. Выполните проверку результата.
Решение.
Остаток 1 – положительное число, при этом его величина меньше, чем модуль делителя (модуль делителя равен 3). То есть, первый этап проверки пройден успешно. Переходим ко второму этапу.
Вычисляем значение выражения b·c+d при b=−3, c=7, d=1. Имеем b·c+d=−3·7+1=−21+1=−20. Таким образом, равенство a=b·c+d – неверное (в нашем примере a=−19).
Следовательно, деление с остатком было проведено неверно.
Решение примеров
Для того чтобы произвести деление с остатком, используется определенная запись.
Приведем примеры по математике (3 класс). Деление с остатком в столбик можно не записывать. Достаточно записи в строчку: 13:4=3 (остаток 1) или 17:5=3 (остаток 2).
Разберем все подробнее. Например, при делении 17 на три получается целое число пять, кроме того, получается остаток два. Каков порядок решения такого примера на деление с остатком? Сначала необходимо отыскать максимальное число до 17, разделить которое можно без остатка на три. Самым большим будет 15.
Далее проводится деление 15 на число три, результатом действия будет цифра пять. Теперь вычитаем из делимого число, найденное нами, то есть из 17 отнимаем 15, получаем два. Обязательным действием является сверка делителя и остатка. После проверки обязательно записывается ответ совершенного действия. 17:3=15 (остаток 2).
Если остаток будет больше делителя, действие выполнено неправильно. Именно по такому алгоритму выполняет 3 класс деление с остатком. Примеры сначала разбирает учитель на доске, затем ребятам предлагается проверка знаний путем проведения самостоятельной работы.
Случаи деления 80 : 20, 87 : 29
Начнем с деления на двузначное число.
Приемы деления вида 87 : 29
Найдите значения двух выражений:
Для решения посмотрите на цифры единиц. Делитель заканчивается на 9. Вспомните таблицу умножения девяти. Какое произведение имеет семерку на конце? 27.
Других вариантов в таблице умножения на девять нет. Ответ равен трем.
Внимательно посмотрите на цифры в единицах. Делимое заканчивается на четверку. Вспомните множитель, который при умножении шести в произведении дает последнюю цифру четверку.
Это два случая: четыре, девять. В значениях произведений четверка на конце. Какой множитель подходит? Давайте посмотрим. Девять — многовато.
Задания легко решать, если знаешь таблицу умножения.
Деление столбиком на двузначное число
Вы уже знаете, что для записи действия деления применяют математический символ в виде двоеточия (∶), обелюса (÷), дробной (–), косой (∕) черты. Сегодня мы используем знак, который похож на лежащую боком букву.
При делении столбиком очень важна аккуратность, поэтому возьмите листок в клеточку.
Как записать решение примера 32 : 16 столбиком? Запишите каждую цифру делимого 32 в отдельную клеточку. Отступите одну клеточку вправо, запишите делитель 16. Проведите вертикальную и горизонтальную черточку.
Подбираем частное. Посмотрите на цифры единиц 2 и 6. Вспомните табличные случаи.
Семерка нам не подойдет, потому что 16 ∙ 7 — это большая величина. Значит, выбираем двойку. Проверяем: 16 ∙ 2 = 32. Записываем двойку на место частного под чертой. Вычитаем 32 из делимого. Пишем нуль. 32 разделили нацело.
Хорошо. А знаете ли вы, что с древних времён замечено влияние грецкого ореха на работу мозга. Как будто природа создала его, по форме извилин напоминающим полушария головного мозга. Благодаря работе этого центрального органа мы справляемся с математическими задачами.
Округление чисел
Для нахождения приближенного значения применяется такое действие как округление чисел.
Слово «округление» говорит само за себя. Округлить число значит сделать его круглым. Круглым называется число, которое оканчивается нулём. Например, следующие числа являются круглыми:
10, 20, 30, 100, 300, 700, 1000
Любое число можно сделать круглым. Процедуру, при которой число делают круглым, называют округлением числá.
Мы уже занимались «округлением» чисел, когда делили большие числа. Напомним, что для этого мы оставляли без изменения цифру, образующую старший разряд, а остальные цифры заменяли нулями. Но это были лишь наброски, которые мы делали для облегчения деления. Своего рода лайфхак. По факту, это даже не являлось округлением чисел. Именно поэтому в начале данного абзаца мы взяли слово округление в кавычки.
На самом деле, суть округления заключается в том, чтобы найти ближайшее значение от исходного. При этом, число может быть округлено до определённого разряда — до разряда десятков, разряда сотен, разряда тысяч.
Рассмотрим простой пример на округление. Дано число 17. Требуется округлить его до разряда десятков.
Не забегая вперёд попробуем понять, что означает «округлить до разряда десятков». Когда говорят округлить число 17, то надо понимать, что от нас требуют найти ближайшее круглое число от числá 17. Причём в ходе этого поиска возможно изменения коснутся и той цифры, которая располагается в разряде десятков числá 17 (т.е цифры 1).
Предстáвим числа от 10 до 20 с помощью следующего рисунка:
На рисунке видно, что для числá 17 ближайшее круглое число это число 20. Значит ответ к задаче таким и будет: «17 приближённо равно 20″
17 ≈ 20
Мы нашли приближённое значение для 17, то есть округлили его до разряда десятков. Видно, что после округления в разряде десятков появилась новая цифра 2.
Попробуем найти приближённое число для числа 12. Для этого снова предстáвим числа от 10 до 20 с помощью рисунка:
На рисунке видно, что ближайшее круглое число для 12 это число 10. Значит ответ к задаче таким и будет: 12 приближённо равно 10
12 ≈ 10
Мы нашли приближённое значение для 12, то есть округлили его до разряда десятков. В этот раз цифра 1, которая стояла в разряде десятков в числе 12, не пострадала от округления. Почему так получилось мы расскажем позже.
Попробуем найти ближайшее число для числá 15. Снова предстáвим числа от 10 до 20 с помощью рисунка:
На рисунке видно, что число 15 одинаково удалено от круглых чисел 10 и 20. Возникает вопрос: которое из этих круглых чисел будет приближённым значением для числа 15? Для таких случаев условились принимать бóльшее число за приближённое. 20 больше чем 10, поэтому приближённое значение для 15 будет число 20
15 ≈ 20
Округлять можно и большие числа. Естественно, для них делать рисунки и изображать числа не представляется возможным. Для них существует свой способ. Например, округлим число 1456 до разряда десятков.
Итак, мы должны округлить 1456 до разряда десятков. Разряд десятков начинается на пятёрке:
Теперь о существовании первых цифр 1 и 4 временно забываем. Остается число 56
Теперь смотрим, какое круглое число находится ближе к числу 56. Очевидно, что ближайшее круглое число для 56 это число 60. Значит заменяем число 56 на число 60
Значит при округлении числа 1456 до разряда десятков полýчим 1460
1456 ≈ 1460
Видно, что после округления числа 1456 до разряда десятков, изменения коснулись и самогó разряда десятков. В новом полученном числе в разряде десятков теперь располагается цифра 6, а не 5.
Округлять числа можно не только до разряда десятков. Округлять число можно до разряда сотен, тысяч, десятков тысяч и так далее.
После того, как станóвится ясно, что округление это ни что иное как поиск ближáйшего числá, можно применять готовые правила, которые значительно облегчают округление чисел.