Алгебра 8 Мордкович (упр. 31.1 — 31.28)
§ 31. Ещё одна формула корней квадратного уравнения
№ 31.1. Решите уравнение:
а) х^2 – 14х + 33 = 0; б) х^2 – 10х – 39 = 0; в) х^2 + 12x – 28 = 0; г) х^2 + 12x + 35 = 0.
№ 31.2. а) х^2 + 34х + 280 = 0; б) х^2 – 16х – 132 = 0;
в) х^2 – 24х + 108 = 0; г) х^2 + 26х – 120 = 0.
№ 31.3. а) 9х^2 – 20х – 21 = 0; б) 7х^2 + 6х – 1 = 0;
в) 5х^2 + 8х – 4 = 0; г) 5х^2 – 4х – 1 = 0.
№ 31.4. а) х^2 – 2х – 1 = 0; б) х^2 + 4х + 1 = 0;
в) х^2 + 2х – 2 = 0; г) х^2 – 6х + 7 = 0.
№ 31.5. а) 4х^2 – 8х + 1 = 0; б) 9х^2 + 12x + 1 = 0;
в) 4х^2 – 12x +7 = 0; г) 25х^2 + 10х – 4 = 0.
№ 31.6.
№ 31.7. Площадь прямоугольника равна 675 см2. Найдите стороны прямоугольника, если одна из них на 30 см меньше другой.
№ 31.8. От квадратного листа отрезали полосу шириной 6 см. Площадь оставшейся части равна 135 см2. Определите первоначальные размеры листа.
№ 31.9. Произведение двух натуральных чисел, одно из которых на 6 больше другого, равно 187. Найдите эти числа.
№ 31.10. Найдите площадь прямоугольника, если известно, что одна сторона прямоугольника на 14 см больше другой, а диагональ прямоугольника равна 34 см.
№ 31.11. Мотоциклист задержался с выездом на 6 мин. Чтобы наверстать потерянное время, он увеличил намеченную скорость на 10 км/ч. С какой скоростью ехал мотоциклист, если весь путь равен 30 км?
№ 31.12. Катер должен был пройти 36 км за определенное время, но был задержан с отправлением на 12 мин и поэтому, чтобы прийти вовремя, шел со скоростью на 6 км/ч большей, чем предполагалось по расписанию. С какой скоростью шел катер?
№ 31.13. Два автобуса выехали одновременно из пункта А в пункт В, расстояние между которыми 48 км. Один из автобусов, двигаясь на 4 км/ч быстрее другого, прибыл в В на 10 мин раньше, чем другой. Найдите скорости автобусов.
№ 31.14. Поезд был задержан у семафора на 24 мин и, чтобы прибыть на станцию назначения по расписанию, должен был оставшиеся 195 км пройти со скоростью, на 10 км/ч превышающей первоначальную. Найдите первоначальную скорость поезда.
№ 31.15. Расстояние 400 км скорый поезд прошел на 1 ч быстрее товарного. Какова скорость каждого поезда, если скорость движения товарного поезда на 20 км/ч меньше, чем скорого?
№ 31.16. На середине пути между станциями А и В поезд был задержан на 10 мин. Чтобы прибыть в B по расписанию, машинисту пришлось увеличить первоначальную скорость поезда на 12 км/ч. Найдите первоначальную скорость поезда, если известно, что расстояние между станциями равно 120 км.
№ 31.17. Катер прошел 8 км по течению реки и 16 км против течения, затратив на весь путь 4/3 ч. Какова скорость движения катера по течению, если собственная скорость катера равна 20 км/ч?
№ 31.18. Моторная лодка прошла 7 км по течению реки и 10 км против течения, затратив на путь по течению на 0,5 ч меньше, чем на путь против течения. Собственная скорость лодки равна 12 км/ч. Найдите скорость хода лодки против течения.
№ 31.19.
№ 31.20.
№ 31.21.
№ 31.22.
№ 31.23.
№ 31.24. Расстояние между городами А и В равно 120 км. Через 2 ч после отправления из А мотоциклист был задержан у шлагбаума на 6 мин. Чтобы прибыть в В в намеченный срок, он увеличил скорость на 12 км/ч. С какой скоростью стал двигаться мотоциклист?
№ 31.25. Велосипедист проехал 40 км от города до фермы. Возвращаясь, он сначала 2 ч ехал с той же скоростью, а затем сделал остановку на 20 мин. После остановки велосипедист увеличил скорость на 4 км/ч и затратил на обратный путь столько же времени, сколько на путь от города до фермы. С какой скоростью двигался велосипедист после остановки?
№ 31.26. В начале года завод выпускал 800 изделий в месяц. В течение года завод дважды увеличивал выпуск продукции на одно и то же число процентов. На сколько процентов завод увеличивал выпуск продукции каждый раз, если в конце года он выпускал уже 1152 изделия в месяц?
№ 31.27. Университет в течение двух лет увеличивал количество принятых студентов на один и тот же процент. На сколько процентов увеличивался прием студентов ежегодно, если количество поступивших возросло с 2000 человек до 2880?
№ 31.28. Для очистки пруда, содержащего 2800 м3 воды, предполагалось к определенному сроку выкачать всю воду с помощью насосов. Так как насосов было прислано меньше, чем ожидалось, то ежедневно выкачивали на 20 м3 меньше предполагаемой нормы. Через день после истечения намеченного срока оставалось выкачать еще 100 м3 воды. За сколько дней предполагалось выкачать воду первоначально?
Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2020). ГЛАВА 4. КВАДРАТНЫЕ УРАВНЕНИЯ. § 31. Ещё одна формула корней квадратного уравнения. ОТВЕТЫ на упражнения 31.1 — 31.28. Вернуться в ОГЛАВЛЕНИЕ.
Просмотров: 38 746
Онлайн-справочник — есть ли от него польза?
Ребята сейчас находятся в таком возрасте, когда их больше интересуют изменения, которые с ними происходят, а не учеба. Даже отличники начинают сдавать свои позиции, что уж говорить о более «слабых» школьниках? Тем не менее требования предъявляемые учителями все так же строги. Любые ошибки грозят снижением успеваемости. Поэтому довольно часто учащиеся прибегают к помощи «ГДЗ по Алгебре Учебник Макарычев Ю. Н. 8 класс (Просвещение)».
Справочник окажет подросткам необходимую поддержку и поможет наверстать упущенное на уроках, так как он:
- составлен опытными методистами;
- не раз был проверен на достоверность размещенных решений и ответов;
- соответствует ФГОС;
- полностью соответствует текущему курсу и дополняет собой учебник.
Польза, которую ученики получат от издания, напрямую зависит от их отношения к работе с ним. Если просто списывать номера, то особого толка от этого, естественно, не будет, ведь знания так и продолжат проходить мимо. А вот тщательная проработка материала, ежедневный самоконтроль, работа над ошибками и периодическое повторение пройденного — залог хороших оценок и полноценных навыков по одному из самых сложных предметов в программе обучения.
Чем поможет ГДЗ при изучении алгебры?
На восьмом году обучения начинается активная подготовка к предстоящим вскоре ОГЭ. Один из основных предметов для сдачи — алгебра, так что знать эту дисциплину нужно очень хорошо. К сожалению, не все школьники способны воспринять все аспекты столь непростой науки. На помощь им могут прийти «ГДЗ по Алгебре 8 класс Учебник Макарычев, Миндюк, Нешков, Суворова (Просвещение)», в которых подробно разобраны нюансы текущего материала.
В восьмом классе учащиеся будут осваивать такие темы как:
- Рациональные выражения, их преобразование.
- Дроби, действия с ними.
- Функция y=k/x и её график.
- Квадратный корень, его нахождение.
- Уравнение х 2=а.
- Теорема Виета, и т.д.
Программа этого года достаточно обширна, поэтому на освоение каждой темы отводится минимум времени. Основную часть теоретического материала ребятам приходится изучать дома
Но времени на это порой категорически не хватает, ведь нужно уделять внимание и другим предметам. Поэтому некоторые моменты школьники просто пропускают в надежде разобраться в них потом
Однако такое отношение приводит лишь к образованию пробелов в знаниях. Допускать подобного нельзя, ведь это может негативно сказаться на успеваемости и общих итогах обучения. Так что учащимся рекомендуется воспользоваться решебником, который поможет быстро вникнуть в суть всех параграфов из учебника.
Решебник по алгебре 8 класс Макарычева – ответы к учебнику 2013-2017 г
Не каждый может позволить оплатить услуги репетитора. Материал ГДЗ к учебнику автора Макарычева прост и удобен в пользовании. С ним ученик почувствует уверенность при выполнении домашней работы, а родитель всегда сможет проверить знания ребенка или же оказать помощь при решении затруднительных упражнений.
Сборник поможет освоить все темы восьмого класса, которые необходимы для продолжения обучения в следующем году:
- Рациональные дроби – сокращения, умножение и деление, сложение и вычитание, преобразования.
- Квадратные корни – из произведения, свойства, в квадрате, из суммы или разности, из степени, умножение, вынесение и внесение множителя.
- Квадратные уравнения – полные, неполные, приведенные.
- Неравенства – строгие линейные, дробные, двойные.
- Степени с целым показателем – правила вычисления, тождественные преобразования, поднятие степени из знаменателя в числитель и наоборот, возведение числа 10 в целую отрицательную степень, стандартный вид числа.
- Элементы статистики – выборка, объем, размах, среднее арифметическое, средняя скорость движения, мода и медиана, частота, относительная частота.
Читать решебник удобно с любого устройства онлайн. Старшеклассник быстро разберется, как получить доступ к верным ответам по алгебре 8 класс Миндюк. Достаточно просто выбрать нужный номер упражнения. Разнообразные задания подробно прорешены специалистами.
Программа становится сложнее с каждым годом. А переход из седьмого класса в восьмой особенно сложный, так как учеников начинают усиленно подготавливать к предстоящим экзаменам. Размер домашних заданий увеличивается не только по алгебре 8 класс, но и по другим предметам. Школьники вынуждены все свободное время после школы сидеть над учебниками и тетрадями, и даже в выходные дни. А ведь у многих есть еще дополнительные занятия в кружках. Родители заняты домашними хлопотами и другими проблемами не меньше детей. Даже если они хорошо разбираются в математике, то у них просто нет времени ни на проверку домашней работы подростка, ни тем более на помощь. Достаточно просто обратиться за помощью к сборнику с ответами, не обращаясь к репетиторам, и не получая плохих отметок.
Преимущества данного сборника ГДЗ перед другими:
- Все ответы подготовлены в соответствии с учебной программой. Учитель никогда не догадается, что вы списали.
- В разработке участвовали математики, а также преподаватели алгебры.
- Во многих упражнениях вы найдете подробные комментарии, которые помогут вам разобраться, как были получены такие данные.
- Понятный и удобный для использования интерфейс сайта, где за секунду вы найдете нужный ответ.
- Возможность использования со смартфона или планшета, что удобно для применения на уроке во время самостоятельных работ или на перемене, если вы не успели сделать домашнее задание дома.
- Все решения доступны абсолютно бесплатно. Просто берите и списывайте!
Пособие содержит разобранные ответы абсолютно на все задания учебника. Это поможет не только выполнить домашнее задание и прийти на урок подготовленным, но и проработать ранее пройденный материал, разобрать решение примеров, уравнений и задач, быть уверенно подготовленным к самостоятельным и контрольным работам, на которых списать уже не получится.
С помощью уникальной навигации пользователи сайта найдут нужные им задания по алгебре. Это исключает расхождения между ответами и учебником. Версия решенных упражнений актуальна на текущий год, все задания совпадают с последней версией учебника. Надеемся, что теперь каждый учащийся получит достаточное количество объяснений, чтобы в дальнейшем получать только отличные оценки и готовиться к поступлению в другие учебные заведения!
Перевод чисел из одной системы счисления в другую
Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:
1. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =
2. Перевести число в десятичную систему счисления.Решение: = = = Ответ: =
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.
Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
3. Перевести число в восьмиричную систему счисления.Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421Проверка: = = = , результат совпал. Значит перевод выполнен правильно.Ответ: =
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Перевод дробной части числа из десятичной системы счисления в другую систему счисления
Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.
4. Перевести число в двоичную систему счисления.Решение: (0 — целая часть, которая станет первой цифрой результата), (0 — вторая цифра результата), (1 — третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).Ответ: =