Алгебра 8 макарычев учебник

Гдз по алгебре 8 класс: макарычев

Понятие рационального выражения

В и классе мы уже изучали дроби и действия над ними. В классе рассматривались рациональные числа, которые, по сути, и являются дробями. Однако до этого мы изучали только так называемые числовые дроби, у которых в числителе и знаменателе стоят какие-то числа либо выражения с числами, но не переменные величины.

Следующие дроби являются числовыми:

Однако нередко в алгебре приходится иметь дело и с дробями, которые содержат переменные. В качестве примера подобных выражений можно привести:

Так как деление на ноль является недопустимой операцией в алгебре, то некоторые дроби могут не иметь смысла. Так, дробь

бессмысленна, так как ее знаменатель 21 – 3•7 равен нулю.

Если дробь содержит переменные величины, то ее значение зависит от этих переменных. Так, дробь

при у = 4 принимает значение, равное 9. Если же у = 3, то эта дробь окажется бессмысленной.

Значения переменных величин, при которых дробь сохраняет свой смысл, называют допустимыми значениями переменных.

Пример. Укажите множество допустимых значений величин х и у для дроби

Решение. Недопустим только случай, при котором в знаменателе находится ноль, то есть когда выполняется равенство

х – у = 0

или равносильное ему равенство

х = у

Следовательно, допустимыми значениями являются все такие пары (х; у), что х ≠ у.

Пример. Каковы допустимые значения величин а и b в дроби

Решение. В данной записи есть три дробных черты, а значит, и три знаменателя:

Ни один из знаменателей не должен равняться нулю, поэтому

Перенесем в последнем неравенстве 2-ое слагаемое вправо, изменив знак (правила преобразований выражений со знаком ≠ точно такие же, как и у равенств):

По свойству пропорции имеем:

1•а ≠ 1•b

а ≠b

Итак, допустимыми являются все значения a и b, при которых а ≠ 0, b≠ 0, a≠b.

Пример. Найдите множество допустимых значений х для дроби

Решение.

Ясно, что знаменатель должен отличаться от нуля:

х2 – 25 ≠ 0

Чтобы найти, при каких значениях неизвестной величины знаменатель обращается в ноль, надо решить уравнение

х2 – 25 = 0

Представим полином в левой части как произведение, применив формулу квадрата разности:

х2 – 52= 0

(х – 5)(х + 5) = 0

х = 5 или х = – 5

Получаем, что исходная дробь сохраняет смысл при любых х, отличных от – 5 и 5.

Порою дроби, содержащие переменные, могут встречаться в тождествах.

Пример. Докажите тождество

Решение. У дроби в левой части знаменатель всегда положителен, поэтому все допустимыми являются все значения c. Согласно свойству операции деления, делимое равно произведению делителя и частного, поэтому для доказательства тождества надо лишь показать справедливость равенства

(с3 – 2с2 + с – 2) = (с – 2)(с2 + 1)

Раскроем скобки в правой части:

(с – 2)(с2 + 1) = с3 – 2с2 + с – 2

Получили одинаковое выражение и для левой, и для правой части тождества, следовательно, оно верное.

Теперь сформулируем понятие рационального выражения.

Среди рациональных выражений выделяют целые и дробные выражения.

Приведем примеры целых рациональных выражений:

А вот несколько примеров дробных рациональных выражений:

Стоит заметить, что дробь и дробное выражение – это два разных понятия. Для иллюстрации приведем два примера:

  •  – это дробь, но целое, а не дробное выражение;
  • (х + 7):t – это дробное выражение, но не дробь.

Отдельно отметим, что дробь равна нулю тогда, когда ее числитель равен нулю, а знаменатель нет. Если же и знаменатель равен нулю, то получается недопустимое действие – деление на ноль, поэтому дробь не будет иметь смысла.

Пример. Найдите все корни уравнения

Решение. На первый взгляд уравнение кажется сложным, особенно из-за знаменателя. Однако он здесь почти не играет роли. В левой части находится дробь, значит, нулю равен ее знаменатель:

(х – 1)(х + 2) = 0

х – 1 = 0 или х + 2 = 0

х = 1 или х = – 2

Получили два корня. Осталось убедиться, что при этих значениях х дробь не становится бессмысленной, то есть ее знаменатель не обращается в ноль. При х = 1 имеем знаменатель

2•14 – 3•13 + 5•1 – 4 = 2 – 3 + 5 – 4 = 0

поэтому число 1 НЕ является корнем уравнения. Теперь проверим знаменатель при х = – 2:

2•(– 2)4 – 3•( – 2)3 + 5•( – 2) – 4 =

= 32 + 24 – 10 – 4 = 42

Получается, что единственное корень уравнения – это ( – 2).

Ответ: – 2

Представление дроби в виде суммы дробей

Сумму двух дробей можно представить в виде несократимой дроби единственным образом, например:

Однако у обратной задачи, разложения одной дроби на сумму нескольких других, есть бесконечной множество решений:

То же самое верно в отношении дробных выражений. Например,

можно разложить так:

С другой стороны, это же выражение можно представить в следующем виде:

Для раскладывания дроби на сумму дробей можно воспользоваться методом неопределенных коэффициентов, предложенным Рене Декартом в 1637 году. Покажем, как его использовать, на примере. Пусть надо представить в виде суммы двух дробей отношение

Заметим, что знаменатель х2 – 4 можно записать как произведение полиномов первой степени (х – 2)(х + 2):

Это означает, что исходное выражение можно представить как сумму дробей со знаменателями (х – 2) и (х + 2). Обозначим числители в этих дробях как неизвестные величины aи b (они и носят название неопределенных коэффициентов). Тогда можно записать, что

Задача сводится к тому, чтобы найти a и b. Для этого преобразуем сумму дробей:

Полученная дробь должна равняться исходной дроби:

У правой и левой части равны знаменатели, а значит, должны равняться и числители:

(a + b)x + (2a– 2b) = 2x + 6

Это тождество может быть верным только тогда, когда справа и слева равны коэффициенты перед переменной х, а также свободные члены, поэтому можно записать систему:

Решив эту систему, мы сможем найти значения a и b. Используем метод подстановки, выразив а из первого уравнения:

а + b = 2

а = 2 – b

Подставим эту формулу во второе уравнение:

2а – 2b = 6

2 (2 – b) – 2b = 6

4 – 4b = 6

– 4b = 10

b = – 2,5

Далее находим a:

а = 2 – b = 2 – (– 2,5) = 2 + 2,5 = 4,5

Итак, получили, что a = 4,5 и b = – 2,5. Это значит, исходную дробь можно разложить следующим образом:

Теперь рассмотрим, как производится умножение и деление дробных выражений. Эти действия аналогичны операциям с обычными числами, которые . Напомним две основные формулы:

Пусть требуется перемножить величины

Эта операция осуществляется так:

Теперь посмотрим, как выполняется деление:

Деление заменяется умножением на дробь, обратную делителю:

Для упрощения выражений часто используют формулы сокращенного умножения:

При возведении дроби в степень надо отдельно возводить в степени знаменатель и числитель:

Вообще для любого натурального числа nбудет верным тождество:

Пусть надо возвести в 4-ую степень дробь

Выглядеть это будет так:

Понравилась статья? Поделиться с друзьями:
ГДЗ 8 класс
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: